- 相關(guān)推薦
作為一位剛到崗的教師,教學(xué)是重要的工作之一,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,那么優(yōu)秀的教學(xué)反思是什么樣的呢?以下是小編精心整理的《乘法分配律》教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。
《乘法分配律》教學(xué)反思1
1、乘法分配律既要注重它的外形結(jié)構(gòu)特點,更要注重其內(nèi)涵。
乘法分配率的結(jié)構(gòu)特點,即兩數(shù)的和乘一個數(shù)(先加后乘)=兩個積的和(先乘后加),使學(xué)生從表象上進行初步感知。從而理解(4+2)×25=4×25+2×25是相等的,即左邊表示6個25,右邊也表示6個25,所以(4+2)×25=4×25+2×25。
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習(xí)。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的'和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進行一些對比練習(xí)。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應(yīng)用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學(xué)生進行一題多解的練習(xí),加深學(xué)生對乘法結(jié)合律與乘法分配律的理解。
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①豎式計算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對不同的解題方法,引導(dǎo)學(xué)生進行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行計算的條件是不一樣的。乘法結(jié)合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。
《乘法分配律》教學(xué)反思2
乘法分配律是一節(jié)概念課,是在學(xué)生已經(jīng)掌握了加法運算定律以及乘法交換律和結(jié)合律的基礎(chǔ)上進行教學(xué)的。在五大運算定律中,是最難理解的,學(xué)生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律進行簡便計算 。
成功之處:
1.本課在教學(xué)情境的設(shè)計上沒有采用課本上的`主題圖,而是選取學(xué)生熟悉的買校服情境:這學(xué)期學(xué)校要換新校服。上衣每件28元,褲子每條12元。我們班共需繳校服費多少元?學(xué)生獨立思考,同位交流,能用兩種方法解答出來,然后讓學(xué)生對比兩種算法初步讓學(xué)生感知乘法分配律的意義,即(28+12)×44=28×44+12×44。
2.加深對乘法分配律意義的理解,讓學(xué)生不僅知道兩個數(shù)的和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。通過多種形式的練習(xí)讓學(xué)生深入理解乘法分配律的意義。
不足之處:
1.在總結(jié)乘法分配律時沒有把結(jié)構(gòu)說的很透徹,導(dǎo)致學(xué)生出現(xiàn)在練習(xí)時有一個同學(xué)在同步學(xué)習(xí)的練習(xí)題中把連乘算成乘法分配律。
2.學(xué)生的語言敘述不熟練,導(dǎo)致學(xué)生雖然會背用字母表示的式子,但是不會應(yīng)用。
《乘法分配律》教學(xué)反思3
小學(xué)數(shù)學(xué)《乘法分配律》教學(xué)反思教學(xué)乘法分配律之后,發(fā)現(xiàn)學(xué)生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。針對這種情況,我認為在教學(xué)中應(yīng)該注意這些問題:
1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。
教學(xué)中通過解決買水果濟青高速公路全長約多少千米?這一問題,結(jié)合具體的生活情景,得到了(110+90)2=1102+902這一結(jié)果。這時我們往往比較注意了等式兩邊的外形結(jié)構(gòu)特點,即兩數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。所以這里我們不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法的意義的角度理解,即左邊表示200個2,右邊也表示200個2,所以(110+90)2=1102+902
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習(xí)。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的'和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)25與(404)25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進行一些對比練習(xí)。如:進行題組對比15(84)和15(8+4);25125258和25125+258;練習(xí)中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應(yīng)用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學(xué)生進行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解。
如:計算12588;10189你能用幾種方法?
12588 ①豎式計算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①豎式計算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。對不同的解題方法,引導(dǎo)學(xué)生進行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行間算的條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到用簡便算法進行計算成為學(xué)生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
4、多練,針對典型題目多次進行練習(xí)。
練習(xí)時注意練習(xí)量和練習(xí)時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習(xí)一次,再到1周練習(xí)一次。典型題型可選擇(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。對于比較特殊的題目可間斷性練習(xí),對優(yōu)生提出掌握的要求。如3698+72;6825+68+6874,3212525等。
《乘法分配律》教學(xué)反思4
問題的探索
1、小組合作,培養(yǎng)估計意識
師:我們先來估計一下他們大約用了多少塊瓷磚好嗎?
生:思考并回答,只要是學(xué)生說的合理就可以
估計的方法很多:估計一行有10塊,一共有10行,10×10=100(塊)
估計左邊有50塊,右邊有50塊,合起來一共有100塊。
……
師:那到底誰的估計最合適呢?讓我們共同來研究一下好嗎?
2、自主探索,驗證估計的正確性
師:請同學(xué)們用自己喜歡的方式做到練習(xí)本上。把你想到的算法都寫出來。
先獨立思考,然后在小組內(nèi)交流一下。
生:思考、交流
師:看到剛才同學(xué)們積極思考的樣子,老師很想知道你們是怎么想的?誰想告訴老師和同學(xué)們?
提醒其他學(xué)生認真傾聽,同時對同伴的回答進行補充。
可能出現(xiàn)的結(jié)果:(1)(6+4)×9=10×9=90(塊)
。2)6×9+4×9=54+36=90(塊)
。3)6×9=54(塊)4×9=36(塊)54+36=90(塊)
學(xué)生還有可能出現(xiàn)其它的不同的思考方法,但只要有理由老師都要進行肯定。
學(xué)生思考出的算式可以讓學(xué)生自己寫到黑板上,然后老師根據(jù)自己的需要邊總結(jié)邊調(diào)整出如下的`板書:
(1)(6+4)×9=10×9=90(塊)
。2)6×9+4×9=54+36=90(塊
師:通過計算我們可以看出工人師傅一共貼了90塊瓷磚,那誰估計的答案最合適呢?掌聲鼓勵下自己。
3、分析比較
師:仔細觀察兩種方法有什么不同
生:第一種方法是先求出一行有多少塊,再求一共有多少塊;第二種方法是先求出一面墻用了多少塊,再求出另一面墻用了多少塊,最后求一共用了多少塊。
4、結(jié)論:
師:我們來比較一下這兩個算式的結(jié)果如何?
生:相等
師:用什么符號連接(結(jié)果相等,用等號連接)
。6+4)×9=6×9+4×9,(板書)
教學(xué)反思:本節(jié)課的重點和難點是對規(guī)律的探索,在得出算式(6+4)×9=6×9+4×9以后,我沒有用例子讓學(xué)生很快的歸納出一個一般的結(jié)論,而是引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)、猜想、舉例驗證、歸納概括等,讓學(xué)生把靜態(tài)的知識結(jié)論轉(zhuǎn)化成動態(tài)的探索對象,使認知任務(wù)本身有了一種誘發(fā)學(xué)生較高思維水平的潛力,給規(guī)律的探索過程注入了生命力。
《乘法分配律》教學(xué)反思5
乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
1、關(guān)注學(xué)生已有的知識經(jīng)驗。以學(xué)生身邊熟悉的`情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境――為參加“陽光伙伴”的32 名運動員購買統(tǒng)一服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(35+25 )×32=35 ×32+25 ×32 這個等式,讓學(xué)生觀察,初步感知“乘法分配律”。再根據(jù)“老師還有其他選擇嗎”?這一問題,再次引出(35+25 )×32=35 ×32+25 ×32 ,最后,要求學(xué)生照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
3、教完之后,感覺在練習(xí)的設(shè)計上,還太拘禮與課本,雖然引導(dǎo)學(xué)生發(fā)現(xiàn)了定律,但沒有相配套的練習(xí)使學(xué)生對所學(xué)知識加以鞏固、應(yīng)用。對學(xué)生掌握知識的情況不能及時反饋,對如何用活、用好教材還需進行進一步的思考。
《乘法分配律》教學(xué)反思6
“乘法分配律”的學(xué)習(xí)是在學(xué)習(xí)了乘法交換律和乘法結(jié)合律之后進行的,對于乘法分配律的理解和應(yīng)用上都比前兩個運算定律更有難度,學(xué)生在新課學(xué)習(xí)和知識的應(yīng)用的過程中思路還比較清晰,但是在作業(yè)的過程中出現(xiàn)的好多問題,讓人感覺孩子并沒有對定律有真正意義上的理解。如:(40+4)×25,有時,只用40×25,后面只加上4就行了,還有的把這道題目改成了連乘題,根據(jù)孩子出現(xiàn)的問題和練習(xí)中出現(xiàn)的困惑,我認真的設(shè)計的這節(jié)練習(xí)課。
第一,理清思路,,建構(gòu)完整的知識體系。在本節(jié)課中,我和學(xué)生們一起回顧了乘法的幾種運算定律,比較每種運算定律的字母公式,來區(qū)分乘法交換律、乘法結(jié)合律和乘法分配律之間的`外形結(jié)構(gòu)特點,引導(dǎo)學(xué)生發(fā)現(xiàn),乘法結(jié)合律是幾個數(shù)連乘,而乘法分配律是兩數(shù)的和乘一個數(shù)或者是兩個積的和.從運算符號上我們很快就可以找到它們的不同。乘法交換律和乘法結(jié)合律都只有乘號,而乘法分配律有不同級的兩種運算符號。
第二,優(yōu)化練習(xí)題,實行精練。針對學(xué)生在乘法分配律學(xué)習(xí)后在理解上的困難,及乘法分配律在練習(xí)形式上的多變,我找出課本、課堂作業(yè)本以及一些課外輔導(dǎo)資料上的乘法分配律的計算題,把他們進行概括總結(jié),把不同類型的乘法分配律的方法進行練習(xí),講解。讓學(xué)生對不同的乘法分配律的解決方法都進行嘗試,幫助理解,加深記憶。
第三,一題多法。例如25×44,學(xué)生在利用乘法分配律拆分其中一個數(shù)據(jù)的時候,有多種方法,有的學(xué)生把25拆成20+5,有的是拆了40+4,還有的把25×44轉(zhuǎn)化成25×4×11,這些方法都可以,讓學(xué)生分辨出每一種方法所運用的運算定律,從而加深學(xué)生對知識的認識和理解,在此基礎(chǔ)上,選出最佳方案。
乘法分配律的練習(xí)實在是多種多樣,變幻無窮,要想更好的掌握,關(guān)鍵還是要理解,需多練.
《乘法分配律》教學(xué)反思7
《探索與發(fā)現(xiàn)(三)乘法分配律》教學(xué)反思
東新四小學(xué) 王唯
教學(xué)內(nèi)容:
小學(xué)四年級數(shù)學(xué)(上)《探索與發(fā)現(xiàn)(三)》乘法分配律》教材第48頁
教學(xué)目標(biāo):
1、經(jīng)歷探索的過程,發(fā)現(xiàn)乘法分配律,并能用字母表示。
2、會用乘法分配律進行一些簡便計算。
教學(xué)重點:理解乘法分配律的特點。
教學(xué)難點:乘法分配律的正確應(yīng)用。
教學(xué)過程:
一、復(fù)習(xí)回顧
(出示課件1)計算
35×2×5=35×(2×)
。60×25)×4=65×(×4)
(125×5)×8=(125×)×5
。3×4)×5 × 6=(×)×(×)
師:上節(jié)課,經(jīng)過同學(xué)們的探索,我們發(fā)現(xiàn)了乘法交換律和結(jié)合律,并會應(yīng)用這些定律進行簡便計算,今天咱們繼續(xù)探索,看看我們又會發(fā)現(xiàn)什么規(guī)律。讓我們一起走上探索之路。
二、探究發(fā)現(xiàn)
。ǔ霈F(xiàn)課件2)
師:大家看,工人叔叔正在貼瓷磚呢,看到這幅圖,你發(fā)現(xiàn)了哪些數(shù)學(xué)信息?
生:我發(fā)現(xiàn)有兩個叔叔在貼瓷磚
生:我發(fā)現(xiàn)一個叔叔貼了4列,每列貼9塊,另一個叔叔貼了6列,每列貼了9塊。
師:你最想知道什么問題?
生:我想知道工人叔叔一共貼了多少塊瓷磚?(按鼠標(biāo)出示問題) 師:你能估計出工人叔叔一共貼了多少塊瓷磚嗎?
生:我估計大約有100塊瓷磚
生:我估計大約有90塊瓷磚。
師:請同學(xué)們用自己喜歡的方法來計算瓷磚究竟有多少塊。(學(xué)生做,小組討論,教師巡視)
師:誰來向大家介紹一下自己的做法?
生:6×9+4×9(板書)
=54+36
=90
分別算出正面和側(cè)面貼的塊數(shù),再相加,就是貼的總塊數(shù)。
生:(6+4)×9(板書)
= 10×9
=90(塊)
因為每列都是9塊,所以我先算出一共有多少列,再用列數(shù)去乘每列的塊數(shù),就是一共貼瓷磚的塊數(shù)。
師:同學(xué)們的計算方法都很好,請同學(xué)們仔細觀察兩種算法,你能發(fā)現(xiàn)什么?
生:我發(fā)現(xiàn)計算方法不同,但結(jié)果卻是一樣的.。
6×9+4×9 = (6+4)×9(板書)
師:請同學(xué)們仔細觀察上面兩道算式的特點,你能再舉一些這樣類似的例子嗎?
。▽W(xué)生舉例,教師板書)
師:這幾們同學(xué)舉的例子符合要求嗎?請在小組中驗證一下。 (小組匯報)
小組1:符合要求,因為每組中兩個算式都是相等的。
小組2:在每組的兩個算式中,一個是兩個數(shù)的和去乘一個數(shù),另一個是用這兩個數(shù)分別是去乘同一個數(shù),再相加,符合要求。
。ò鍟茫竭B接算式)
師:比較等號左右兩邊的算式,從它們的特點和結(jié)果相等中你能發(fā)現(xiàn)什么規(guī)律,小組再討論一下。
小組1:我們小組發(fā)現(xiàn),只要符合上面題目要求的算式,結(jié)果都是一樣的。
小組2:我們小組發(fā)現(xiàn),兩個不同的數(shù)分別去和同一個數(shù)相乘,然后再相加,可以先把這兩個數(shù)相加再一起去乘第三個數(shù),結(jié)果不變。 結(jié)論(課件2):師:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。這叫做 乘 法 分 配 律。它是我們學(xué)習(xí)的關(guān)于乘法的第三個定律。
師:大家齊讀一遍。
師:和同桌說一說自己對乘法分配律的理解。
師:上節(jié)課我們學(xué)習(xí)了用字母來表示乘法交換律和結(jié)合律,現(xiàn)在你能用字母的形式表示出乘法分配律嗎?用a,b,c分別表示這三個數(shù),試著寫一寫吧。
。╝+b)×c=a×c+b×c
師:這叫做乘法分配律
三、鞏固練習(xí):
1、計算
(80+4)×25 34×72+34×28
師:觀察算式特點,看是否符合要求,能否應(yīng)用乘法分配律使計算簡便。
2、判斷正誤
( 25 + 7 )×4 = 25 ×4 ×7×4 ( )
35×9 + 35
= 35×( 9 + 1 )
= 350 - - - - ( )
3、填一填
(12+40)×3=× 3 +×3
15×(40 + 8) = 15×+ 15×
78×20+22×20=(+ )×20
四、總結(jié)
師:說說這節(jié)課你有什么收獲?
師:今天同學(xué)們通過自己的探索,發(fā)現(xiàn)了乘法分配律,你們真的很棒。乘法分配律是一條很重要的運算定律。應(yīng)用乘法分配律既能使一些計算簡便,也能幫助我們解決生活中的一些數(shù)學(xué)問題,在我們的生活和學(xué)習(xí)中應(yīng)用非常廣泛。同學(xué)們要在理解的基礎(chǔ)上牢牢記住它,希望它永遠成為你的好朋友,伴你生活、成長。
[板書設(shè)計]
探索與發(fā)現(xiàn)(三)
-----乘法分配律
。╝+b)×c=a×c+b×c
6×9+4×9 =(6+4)×9
。40+4)×25 = 40×25+4×25
。64+36)×42 = 42×64+42×36
《乘法分配律》教學(xué)反思8
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解與敘述的定律。如何教學(xué)能使學(xué)生較好的理解乘法分配律的內(nèi)涵,并能正確的運用定律進行簡便運算呢?我做了一下幾點嘗試。
一、創(chuàng)設(shè)師生競賽,激發(fā)學(xué)習(xí)欲望。
上課教師先出示:(1)8×(125+11) (2)(100+1)×23
。3 )648×5+352×5
老師和同學(xué)們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。
結(jié)果教師又快又對,學(xué)生都很奇怪,教師順勢導(dǎo)入:同學(xué)們都特別想知道在比賽過程中,學(xué)生用計算器都沒有老師口算得快的原因嗎?是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。
這樣的導(dǎo)入讓學(xué)生充滿了求知的欲望,激發(fā)了學(xué)習(xí)的熱情。
二、設(shè)計思考問題,學(xué)生自主探究。
出示例題后,學(xué)生獨立解答,然后教師出示思考問題,學(xué)生自主探究。
討論:
1、這兩種方法有什么不同?兩個算式的結(jié)果如何?用什么符號連接?
2、那么等號連接的這兩個算式有什么特點和聯(lián)系呢?請同學(xué)們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發(fā)現(xiàn)左邊括號外的那個數(shù),寫到右邊都要乘兩次。
生B:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。
整個教學(xué)過程通過學(xué)生觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。
三、練習(xí)有坡度,前后有呼應(yīng)。
在本課的練習(xí)設(shè)計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習(xí)的形式多樣,課本上的填空題解決以后,設(shè)計了判斷題和練習(xí)題,把學(xué)生易出錯的問題提前預(yù)設(shè)好,而且通過練習(xí)讓學(xué)生明白乘法分配律也可以兩個數(shù)的差,也可以是三個數(shù)的和,使學(xué)生對乘法分配律的.內(nèi)容得到進一步完整,也為后面利用乘法分配律進行簡算打下伏筆。為了讓學(xué)生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學(xué)生運用今天所學(xué)知識進行計算,學(xué)生非常有興趣,在練習(xí)中培養(yǎng)了學(xué)生分析、推理、概括的思維能力。
總之,在本堂課中新的教學(xué)理念有所體現(xiàn),是一節(jié)本色的數(shù)學(xué)課堂。但在具體的操作中還缺乏成熟的思考,自主探究環(huán)節(jié)對問題的設(shè)計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設(shè)計順序有些出入,感覺效果沒有預(yù)想的好,上課時對于教案的熟悉程度還有待加強。
《乘法分配律》教學(xué)反思9
由于本學(xué)期的時間比較短,所以自己在講四年級數(shù)學(xué)課的時候,不免有些匆匆。為了保持好進度,習(xí)題處理稍顯落后。在近一段時間對孩子們的“運用乘法分配律進行簡算”的檢查來看,效果不是很好。我發(fā)現(xiàn)這是好多學(xué)生不容易掌握的,很容易和乘法的結(jié)合律弄混淆。所以,我就想搞清楚,到底孩子們是哪里沒有搞清楚?就在課下又提問了幾個老在分配率出錯的孩子運算公式,發(fā)現(xiàn)有的孩子能結(jié)結(jié)巴巴地把公式背出來,有的是比較順利地進行背誦。那么,會順利背誦公式的孩子們到底是哪里不會呢?
帶著這個問題,我是旁敲側(cè)擊地進行“盤問”——我拿著生活中的2.5元的冰淇淋打比方,問問買23個和28個需要多少錢?孩子們算的很快。他們知道把23分解成20加上3,還有部分學(xué)生28×25=(20+8)×25,我當(dāng)時一項,哎呦不錯,還不是完全不會啊?磥,孩子們在真正的生活情境中還是有一大部分人會自覺的用乘法分配律的?墒,真正運用到教學(xué)中,孩子們確實很難達到自覺地運用分配律去計算,特別是一些變式就更加的困難了。
在批改作業(yè)的時候,有三四個孩子的下面的'結(jié)果卻是讓我大跌眼鏡——28×25=(20+8)×25=20×8×25,當(dāng)時我就在想,壞了,孩子們把這兩個公示記混淆了。果不其然,我給他們出了一道題72×25=(8×9)×25=8×25+9×25,我在給學(xué)生們一一講解的時候,我就在反思,這一類問題出現(xiàn)是因為孩子們沒有自覺觀察算式特點的習(xí)慣。他們只是急匆匆的完成自己的作業(yè),對于此類的計算的目的單純得很就是只要得到答案,自己就忽略了計算的過程。
后來我就想,我去時應(yīng)該多出一點類似于(80+8)×25,72×25,125×32×25的這些題對孩子們進行相應(yīng)的練習(xí),這樣來提高孩子們對公式概念的認識。我可以讓孩子們先學(xué)會一道題的做法,在慢慢來進行相應(yīng)的引導(dǎo)。并且出一些題目要求孩子們使用分配律或者結(jié)合律等等,對孩子們進行鞏固。讓孩子們學(xué)會多種方法解決一到數(shù)學(xué)題,把握“湊整”這個解題關(guān)鍵,正確、合理地使用運算定律,就是正確的。做到真正的學(xué)以致用!
《乘法分配律》教學(xué)反思10
乘法分配律是教學(xué)的難點也是重點。這節(jié)課采用從生活中的問題入手,利用學(xué)生感興趣的具體情境展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識,將重視結(jié)論的記憶變?yōu)橹匾晫W(xué)生獲取結(jié)論的體驗和感悟,將模仿式的學(xué)習(xí)變?yōu)樘骄渴降膶W(xué)習(xí)。學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。這樣不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且更能培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力;仡櫿麄教學(xué)過程,這節(jié)課的亮點體現(xiàn)在以下幾個方面:
一、從身邊引入熟悉的生活問題,激趣探究
我們在教學(xué)中要為學(xué)生創(chuàng)設(shè)大量生動、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。在教學(xué)時,我先創(chuàng)設(shè)情景,提出問題:“一共有多少名學(xué)生參加這次植樹活動?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學(xué)生觀察,這個等式兩邊的運算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
二、為學(xué)生提供了自己獨立探究的機會
數(shù)學(xué)教學(xué)應(yīng)該是數(shù)學(xué)教學(xué)的活動。傳統(tǒng)的教學(xué)活動往往只重視結(jié)論的記憶,而這節(jié)課我把學(xué)生的活動定位在感悟和體驗上,引導(dǎo)學(xué)生用數(shù)學(xué)思維方式去發(fā)現(xiàn),去探索。尤其是在學(xué)生初步感悟到兩種算法相等關(guān)系的基礎(chǔ)上,繼續(xù)為學(xué)生創(chuàng)造一個思考的情景。我要求學(xué)生觀察得到的兩個等式,提出“你有什么發(fā)現(xiàn)?”。此時學(xué)生對“乘法分配律”已有了自己的一點點感知,我馬上要求學(xué)生模仿等式,自己再寫幾個類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗證,形成比較“模糊”的認識。
三、為學(xué)生的學(xué)習(xí)方式的`轉(zhuǎn)變創(chuàng)設(shè)了條件
模仿學(xué)習(xí),學(xué)生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應(yīng)用。改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進行探索性的學(xué)習(xí),不能是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗證,辨析與交流的空間,把學(xué)習(xí)的主動權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
《乘法分配律》教學(xué)反思11
—乘法分配律教學(xué)設(shè)計與反思
設(shè)計說明
當(dāng)我給學(xué)生講到練習(xí)四第七題的時候,覺得這道題目可以開發(fā)一下用來上乘法分配律,讓學(xué)生自己制作兩個長不一樣,寬一樣的長方形,通過動手操作來獲得求面積和的方法,自然的引出乘法分配律。然后看了下這節(jié)課的課后練習(xí),里面有乘法分配律的逆向運用的題目,在其后56頁的簡便運算中也能用到逆向運用的知識,于是就把這個運用單獨列出來作為一個知識層次,聯(lián)想到我們以前還學(xué)習(xí)過兩數(shù)之和乘另一個數(shù)等于這兩個數(shù)分別去乘第三個數(shù)再想減的知識,于是就去習(xí)題中找有沒有類似的題目,在55頁第五題中求四年級比五年級多多少人時,如果用乘法分配律的延伸知識可以使計算簡便,又看到練習(xí)五的三、四兩題,就必須要知道這個知識才好解決,于是就把乘法分配律的延伸作為第三個層次的教學(xué)了,按照這個思路設(shè)計了這節(jié)課,實際上下來的效果不錯,既調(diào)動了學(xué)生的學(xué)習(xí)熱情和主動性,又培養(yǎng)了學(xué)生自主探索,發(fā)現(xiàn)并總結(jié)規(guī)律的能力。 教學(xué)設(shè)計
教學(xué)內(nèi)容
蘇教版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》四年級(下冊)第54~55頁。 教學(xué)目標(biāo)
1、學(xué)生在解決實際問題的過程中發(fā)現(xiàn)并理解乘法分配律,并能運用乘法分配律使一些運算簡便。
2、學(xué)生在發(fā)現(xiàn)規(guī)律的過程中,發(fā)展比較、分析、抽象和概括能力,增強用符號表
達數(shù)學(xué)規(guī)律的意識,進一步體會數(shù)學(xué)與生活的聯(lián)系。
3、學(xué)生能聯(lián)系實際,主動參與探索、發(fā)現(xiàn)和概括規(guī)律的學(xué)習(xí)活動,感受數(shù)學(xué)規(guī)律的確定性和普遍適用性,獲得發(fā)現(xiàn)數(shù)學(xué)規(guī)律的愉悅感和成功感,增強學(xué)習(xí)的興趣和自信。
教學(xué)過程
一:創(chuàng)設(shè)情境導(dǎo)入
提問:長方形的面積怎樣求?
指明回答
這里有長分別是10厘米和6厘米,寬都是4厘米的兩個長方形紙片,請同學(xué)們自己動手把它們組成一個新的長方形。(課件出示題目)
學(xué)生動手操作
(課件出示兩個長方形組合的動畫)
二:自主探索,交流合作
1、交流算法,初步感知
提問:請同學(xué)們自己求一下新長方形的面積。
教師巡視,觀察學(xué)生不同的解法
反饋:請學(xué)生說一說自己的解法,應(yīng)當(dāng)有兩種解法,如果學(xué)生說不出來應(yīng)加以引導(dǎo)
。ㄕn件出示兩種解法)
談話:兩個算式解決的都是同一個問題,它們計算的結(jié)果也相同,能把它們寫成一個算式嗎?
學(xué)生自己寫一寫,請學(xué)生說一說,教師相機板書。
2、比較分析,深入體會
提問:算式左右兩邊有什么相同和不同之處呢?小組內(nèi)交流。
反饋交流,在學(xué)生發(fā)言的基礎(chǔ)上,教師根據(jù)情況相機引導(dǎo):等號左邊先算什么,再算什么,右邊先算什么,再算什么呢?使學(xué)生明確:等號左邊是10加6的和乘4,等號右邊是10乘4的積加6乘4的積。
設(shè)疑:是不是類似這樣的算式都具有這樣的性質(zhì)呢?學(xué)生舉例驗證。
組織交流反饋?蛇m當(dāng)?shù)倪x取一些數(shù)字很大的和很小的例子以及有乘數(shù)是0的例子等特殊情況。
3、規(guī)律符號化,揭示規(guī)律
提問:像這樣的算式,寫的完嗎?
我們可以嘗試用自己的方法去表達這個規(guī)律,同學(xué)們自己試著在小組內(nèi)寫一寫,說一說。
反饋引導(dǎo)學(xué)生用不同的方式來表達規(guī)律。
小結(jié)揭示:兩個數(shù)的和乘另一個數(shù)等于這兩個數(shù)分別乘另外的數(shù)再相加。用字母表示:(a+b)×c=a×c+b×c,(板書并課件出示)這就是我們今天要學(xué)的'乘法分配律。(板書課題)
三:實踐運用,初步理解。
1、想想做做1
學(xué)生自主完成,組織交流。
第二小題教師板書,并啟發(fā)學(xué)生從算式所表示的意義角度說一說對這個算式的 理解。并在板書上用箭頭標(biāo)明左邊12出現(xiàn)了2次,右邊在括號外面的數(shù)字就是
12.并向?qū)W生介紹這可以稱作是乘法分配律的逆向運用(板書)
2、想想做做2
自主完成,組織交流。
第三小題引導(dǎo)學(xué)生從乘法意義角度去理解。并使學(xué)生明白74×1可以看做1個
74,也就是74.
第四小題要和想想做做題1的第二小題做對比。
四:拓展延伸,內(nèi)化新知
再次出示兩個長方形紙片,提問:如何比較這兩個長方形的大小
學(xué)生反饋,引導(dǎo)說出可以重疊比較。學(xué)生動手實踐
再問:那么大長方形比小長方形大的面積是那一塊?
讓學(xué)生自己動手摸一摸,課件出示重疊動畫,并把多余部分突出顯示。 提問:如何求多出來的面積呢?請同學(xué)們自己列式解答。
學(xué)生若想不到可以用大長方形面積減去小長方形的面積,教師可以適當(dāng)?shù)奶?示。
學(xué)生反饋,交流。課件出示兩種解法。
談話:這兩個算式結(jié)果相同,解決的也是同一個問題,可以把它們寫成一個算 式,課件出示并板書。
再問:這個算式左右兩邊有什么聯(lián)系,引導(dǎo)學(xué)生說出:兩個數(shù)的差乘另一個數(shù) 等于這兩個數(shù)分別與第三個數(shù)乘,再相減。
談話:這個規(guī)律用字母如何表示呢?自己試著寫寫看。
學(xué)生反饋,教師板書并課件出示。說明這個可以看做是乘法分配律的延伸。 五:解決實際問題,內(nèi)化重點難點。
想想做做題5
課件出示,學(xué)生讀題。
問題一,要求學(xué)生列出不同的算式解答,并通過討論引導(dǎo)學(xué)生適當(dāng)?shù)慕忉寖蓚 算式之間的聯(lián)系。
問題二,鼓勵學(xué)生列出不同的算式解答,并引導(dǎo)學(xué)生適當(dāng)?shù)慕忉寖蓚算式之間 的聯(lián)系,加強學(xué)生對
乘法分配律延伸的理解與內(nèi)化。
反思:
這節(jié)課我是分三個層次來教學(xué)。
第一個層次是乘法分配律的教學(xué),學(xué)生通過運用不同的方法求新長方形的面積來體會規(guī)律,感知規(guī)律的合理性。這個環(huán)節(jié)強調(diào)學(xué)生的自主探索和動手觀察能力。 第二個層次是乘法分配律的逆向運用,通過想想做做題1的第二小題的教學(xué),引導(dǎo)學(xué)生明確可以從乘法的意義角度來理解算式,并體會乘法分配律的逆向運用。
第三個層次是乘法分配律的延伸,通過讓學(xué)生動手操作,知道如何比較兩個長方形的大小,并通過動手指一指,知道多出的面積就是兩者相差的面積。在學(xué)生自己動手求解的過程中,初步的體會到諸如:(10-6)×4=10×4-6×4也有類似的規(guī)律,并嘗試寫出用字母如何表達。
最后通過解決實際問題的形式,把發(fā)現(xiàn)的規(guī)律加以運用,從2個小題的解答中初步體會乘法分配律和乘法分配律延伸的應(yīng)用。
《乘法分配律》教學(xué)反思12
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學(xué)生而言,難度偏大,如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識要比灌輸?shù)脕淼挠浀酶巍?/p>
因此我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進生活,開始學(xué)習(xí)新知。在教學(xué)過程中有坡度的讓學(xué)生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計:
一、讓學(xué)生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責(zé)挖坑和種樹,4人負責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學(xué)生理解帶來的困難。
通過引入解決問題讓學(xué)生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會
借助對同一實際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的'問題。
二、突破乘法分配律的教學(xué)難點
讓學(xué)生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點。為了突破這個教學(xué)難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責(zé),人負責(zé)。一共有多少同學(xué)參加這次植樹活動?
學(xué)生主動去設(shè)計、解決,調(diào)動學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
當(dāng)然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
《乘法分配律》教學(xué)反思13
教材分析:
乘法分配律是北師大版小學(xué)數(shù)學(xué)四年級上冊第三單元最后一節(jié)的教學(xué)內(nèi)容。本課是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進行一些簡便計算的基礎(chǔ)上進行學(xué)習(xí)的。乘法分配律是本單元教學(xué)的一個重點,也是本單元內(nèi)容的難點,教材是按照發(fā)現(xiàn)問題--提出假設(shè)--舉例驗證--歸納結(jié)論等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
1.上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了訂校服的教學(xué)情境,使學(xué)生解決非常熟悉的生活問題、
2.在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。
3.本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學(xué)生參與的'積極性沒有預(yù)想中那么高。可能與我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。
4.以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣
教學(xué)反思:
乘法分配律是第三單元的一個難點。在理解、掌握和運用上都有一定難度。因此如何上好這一課,讓學(xué)生真正地理解乘法分配律,并在理解的基礎(chǔ)上運用好它?我覺得要注重形式上的認識,更要注重意義上的理解。因為單從形式上去記住乘法分配律是有局限性的,以后在運用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學(xué)生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學(xué)生都能輕松運用乘法分配律。
北師大版的教材注重學(xué)生的探索活動,在探索中讓學(xué)生自己去發(fā)現(xiàn)的規(guī)律,才能讓他們真正地理解。本課是“探索與發(fā)現(xiàn)”的第三節(jié)課了,學(xué)生已經(jīng)有了一定的探索能力。因此本課的設(shè)計完全圍繞著學(xué)生的自主活動在進行。
總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運用時問題較多等。
《乘法分配律》教學(xué)反思14
乘法分配律是小學(xué)四年級學(xué)生比較難理解與敘述的定律。如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識要比灌輸?shù)脕淼挠浀酶。因此我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進生活,開始學(xué)習(xí)新知。
教學(xué)內(nèi)容:教材第54~55頁例題,完成“做一做”。
教學(xué)目標(biāo):
1、讓學(xué)生在解決實際問題的過程中發(fā)現(xiàn)乘法分配律;通過計算說理,理解乘法分配律。
2、讓學(xué)生在發(fā)現(xiàn)規(guī)律的過程中,發(fā)展比較、分析、抽象和概括的能力,增強用符號表達數(shù)學(xué)規(guī)律的意識,進一步體會數(shù)學(xué)與生活的聯(lián)系。
3、培養(yǎng)學(xué)生聯(lián)系現(xiàn)實問題主動參與探索、發(fā)現(xiàn)和概括規(guī)律的學(xué)習(xí)態(tài)度,感受數(shù)學(xué)規(guī)律的確定性和普遍適用性,獲得發(fā)現(xiàn)數(shù)學(xué)規(guī)律的愉悅感和成功
感,增強學(xué)習(xí)的興趣和自信。
教學(xué)重、難點:
發(fā)現(xiàn)并理解乘法分配律。
教具準(zhǔn)備:
多媒體課件一套。
教學(xué)過程
一、創(chuàng)設(shè)問題情境
談話:這學(xué)期,我們學(xué)校鼓號隊又增加了新成員,輔導(dǎo)員柳老師正在為他們準(zhǔn)備服裝呢。ㄕn件出示商店場景)
二、展開探索過程
1、初步感知。
提問:仔細觀察,從圖中你獲得了哪些信息?
學(xué)生列式后交流反饋解題思路,并借助圖形加深學(xué)生對兩種解題思路的體會。
提問:猜一猜,這兩種方法的計算結(jié)果會怎么樣?
計算驗證:算一算,來證明你的猜想是正確的。
板書等式:(30+25)x4=30x4+25x4
2、類比展開。
。1)出示圖形,讓學(xué)生說說你想到了什么?你能用兩種方法求出6套衣服一共要付多少元嗎?板書:(30+25)x6=30x6+25x6
。2)除了把長方形看成上衣,梯形看成褲子,把它們看成6套衣服,還可以看成什么?
要求6套課桌椅多少元,你準(zhǔn)備怎么解決?
板書:(100+60)x6=100x6+60x6
3、體驗感悟。
。1)類似這樣的等式還有嗎?你能寫出第4組嗎?
學(xué)生舉例后,挑3組板書。
。2)提問:這3組算式相等嗎?怎么證明?(計算、乘法的意義)
同桌互相檢查剛才寫的算式是否相等。
(3)交流:介紹你寫成功的經(jīng)驗
引導(dǎo):你是怎么根據(jù)左邊的算式寫出右邊的算式的?
4、提示規(guī)律。
。1)提問:像這樣的等式能寫完嗎?
。2)用自己喜歡的方式表達所發(fā)現(xiàn)的規(guī)律,在小組里交流。展示。
板書:(a+b)xc=axc+bxc
(3)板書:乘法分配律
讓學(xué)生用自己的語言說說這個字母式子表示什么,師小結(jié)。
三、鞏固內(nèi)化
1、在□里填上合適的數(shù),在○里填上運算符號。
。42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
學(xué)生獨立填寫,指名報答案,全班共同校對。指出后兩題是乘法分配律的逆向應(yīng)用。
出示:72x(30+6)= 齊說答案。
出示:(25-12)x4= 可能等于什么?怎樣才能確認?你能聯(lián)想到什么?小結(jié)
2、橫著看,在得數(shù)相同的.兩個算式后面畫“√”。
。48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
獨立完成,小組討論為什么有的是相同的,有的是不相同的。指名報答案,說說第三組兩道算式為什么是相等的?第四組的兩道算式為什么不相等?怎樣改一下能使它們相等?
出示打“√”的算式,如果讓你計算的話,你更愿意計算哪邊的式子呢?為什么?小結(jié):有時應(yīng)用乘法分配律可以使計算簡便。
四、總結(jié)回顧
通過今天這節(jié)課的學(xué)習(xí),你有什么收獲?
五、布置作業(yè)
1、必做題:想想做做第5題。
2、選做題:如果把乘法分配律中“兩個數(shù)的和”換成“3個數(shù)的和”、“4個數(shù)的和”或“更多個數(shù)的和”,結(jié)果還會不會不變?用合適的方試著進行驗證。
《乘法分配律》教學(xué)反思15
1、情境的創(chuàng)設(shè)激發(fā)了學(xué)生的計算熱情。
讓學(xué)生在生動具體的情境中學(xué)習(xí)數(shù)學(xué),這是新課標(biāo)倡導(dǎo)的新理念。我聯(lián)系學(xué)生的生活實際,創(chuàng)設(shè)了學(xué)生熟悉的購買家具的場景,配上我生動的語言敘述,一下子就把學(xué)生代入到了一個有數(shù)學(xué)味的問題情境中,吸引了所有學(xué)生的注意。緊接著的問題如果你是小紅,你想買什么家具呢?根據(jù)小紅家的需要,你們能提出哪些數(shù)學(xué)問題?更是激發(fā)了學(xué)生的思維,學(xué)生個個積極動腦,躍躍欲試。在學(xué)生充分提出各種問題的`基礎(chǔ)上,我選擇了有代表性的一個問題讓學(xué)生獨立解決,極大地激發(fā)了學(xué)生的計算熱情。這一環(huán)節(jié)的教學(xué),讓學(xué)生經(jīng)歷了因用而算、以算激用的過程,將算與用緊密結(jié)合。
2、多層的設(shè)計有利于學(xué)生數(shù)學(xué)模型的建立。
首先讓學(xué)生通過獨立計算,交流計算方法,敘述計算過程等一系列的筆算乘法的技能訓(xùn)練,形成一定的算理。然后通過比較124和2132這兩題,它們最大的區(qū)別是什么?在乘的時候,有什么不同呢?如果是四位數(shù)、五位數(shù)乘一位數(shù),你認為該怎么乘呢?這兩個問題的討論、交流,引導(dǎo)學(xué)生進行整理反思,讓學(xué)生能通過兩位數(shù)乘一位數(shù)遷移到三位數(shù)乘一位數(shù),進而自然聯(lián)想到四位數(shù)、五位數(shù)乘一位數(shù)的計算方法其實都是一樣的,從而幫助學(xué)生將零散的知識串起來,有利于學(xué)生數(shù)學(xué)模型的建立。
需要改進的地方是:在學(xué)生探索出筆算方法后,我因為擔(dān)心學(xué)生沒有聽懂,怕學(xué)生做錯,說錯,故而引導(dǎo)太細,學(xué)生的學(xué)習(xí)主動性調(diào)動的不夠。如果我能充分相信學(xué)生,大膽放手,讓學(xué)生獨立地去想,去做,去說,相信學(xué)生的。表現(xiàn)會更出色。
【《乘法分配律》教學(xué)反思】相關(guān)文章:
乘法分配律教學(xué)反思10-28
《乘法分配律》教學(xué)反思03-14
《乘法分配律》說課稿05-17
乘法分配律說課稿05-15
乘法分配律說課稿01-02
《乘法分配律》說課稿02-09
乘法教學(xué)反思10-30
四年級數(shù)學(xué)乘法分配律教學(xué)反思03-12
筆算乘法教學(xué)反思10-10