国产婷婷在线精品综合_97人妻AⅤ一区二区精品_熟妇人妻中文字幕无码_国产一级黄片在线免费观看

您的位置:群走網(wǎng)>教學(xué)資源>教學(xué)反思>勾股定理教學(xué)反思
勾股定理教學(xué)反思
更新時間:2024-08-19 00:24:09
  • 相關(guān)推薦
勾股定理教學(xué)反思

  身為一位優(yōu)秀的教師,我們的工作之一就是教學(xué),對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,教學(xué)反思要怎么寫呢?下面是小編幫大家整理的勾股定理教學(xué)反思,歡迎閱讀與收藏。

勾股定理教學(xué)反思1

  《勾股定理》是人教版教材八年級數(shù)學(xué)(下)的內(nèi)容,第一課時的教學(xué)重點是讓學(xué)生經(jīng)歷勾股定理的探索和證明過程,了解勾股定理的背景知識,在學(xué)習(xí)知識的同時,感受勾股定理的豐富文化內(nèi)涵,激發(fā)學(xué)生的學(xué)習(xí)興趣,對學(xué)生進(jìn)行思想品德教育。

  針對教材的任務(wù)要求,我是按照如下的教學(xué)流程進(jìn)行的:

  一。欣賞圖片引入新課,激發(fā)學(xué)生學(xué)習(xí)興趣

  通過欣賞20xx年在我國北京召開的國際數(shù)學(xué)家大會的會徽圖案,引出“趙爽弦圖”,讓學(xué)生了解我國古代輝煌的數(shù)學(xué)成就,引入課題。

  接下來,讓學(xué)生欣賞傳說故事:相傳2500年前,畢達(dá)格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。

  這樣,一方面激發(fā)學(xué)生的.求知欲望,另一方面,也對學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問題能力的培養(yǎng)。

  二。動手探究,得出猜想

  通過對地板圖形中的等腰直角三角形三邊關(guān)系到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗由特殊到一般的探究過程,學(xué)習(xí)這種研究方法。

  在這一過程中,學(xué)生充分利用學(xué)具去嘗試解決,力求讓學(xué)生自己探索,先在小組內(nèi)討論,然后在全班討論,盡量學(xué)習(xí)更多的方法。

  三。動手實踐,得出定理

  先了解趙爽的證明思路,然后讓學(xué)生利用學(xué)具自己動手剪拼,并利用圖形進(jìn)行證明。

  由于難度比較大,組織學(xué)生開展小組合作學(xué)習(xí)。教師要巡回輔導(dǎo),給予學(xué)生必要的幫助。

勾股定理教學(xué)反思2

  三角學(xué)里有一個很重要的定理,我國稱它為勾股定理,又叫商高定理。因為《周髀算經(jīng)》提到,商高說過"勾三股四弦五"的話。

  實際上,它是我國古代勞動人民通過長期測量經(jīng)驗發(fā)現(xiàn)的。他們發(fā)現(xiàn):當(dāng)直角三角形短的直角邊(勾)是3,長的直角邊(股)是4的時候,直角的對邊(弦)正好是5。而。

  這是勾股定理的一個特例。以后又通過長期的測量實踐,發(fā)現(xiàn)只要是直角三角形,它的三邊都有這么個關(guān)系。即

  與它們相當(dāng)?shù)恼麛?shù)有許多組

  《周髀算經(jīng)》上還說,夏禹在實際測量中已經(jīng)初步運(yùn)用這個定理。這本書上還記載,有個叫陳子的數(shù)學(xué)家,應(yīng)用這個定理來測量太陽的高度、太陽的直徑和天地的`長闊等。

  5000年前的埃及人,也知道這一定理的特例,也就是勾3、股4、弦5,并用它來測定直角。以后才漸漸推廣到普遍的情況。

  金字塔的底部,四正四方,正對準(zhǔn)東西南北,可見方向測得很準(zhǔn),四角又是嚴(yán)格的直角。而要量得直角,當(dāng)然可以采用作垂直線的方法,但是如果將勾股定理反過來,也就是說:只要三角形的三邊是3、4、5,或者符合的公式,那么弦邊對面的角一定是直角。

  到了公元前540年,希臘數(shù)學(xué)家畢達(dá)哥拉斯注意到了直角三角形三邊是3、4、5,或者是5、12、13的時候,有這么個關(guān)系:,。

  他想:是不是所有直角三角形的三邊都符合這個規(guī)律?反過來,三邊符合這個規(guī)律的,是不是直角三角形?

  他搜集了許多例子,結(jié)果都對這兩個問題作了肯定的回答。他高興非常,殺了一百頭牛來祝賀。

  以后,西方人就將這個定理稱為畢達(dá)哥拉斯定教學(xué)反思《《勾股定理》教學(xué)反思》一文

勾股定理教學(xué)反思3

  新課程改革要求我們:將數(shù)學(xué)教學(xué)置身于學(xué)生自主探究與合作交流的數(shù)學(xué)活動中,將知識的獲取與能力的培養(yǎng)置身于學(xué)生形式各異的探索經(jīng)歷中,關(guān)注學(xué)生探索過程中的情感體驗,并發(fā)展實踐能力及創(chuàng)新意識,為學(xué)生的終身學(xué)習(xí)及可持續(xù)發(fā)展奠定堅實的基礎(chǔ)。

  首先講解勾股定理的重要性,讓學(xué)生明白勾股定理是中學(xué)數(shù)學(xué)幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ)。它緊密聯(lián)系了數(shù)學(xué)中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+ b2= c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位,從而激發(fā)學(xué)生的求知欲。

  一、精心編制數(shù)學(xué)教學(xué)目標(biāo)知識與技能:1.讓學(xué)生在經(jīng)歷探索定理的過程中,理解并掌握勾股定理的內(nèi)容;2.掌握勾股定理的證明及介紹相關(guān)史料;3.學(xué)生能對勾股定理進(jìn)行簡單計算。

  過程與方法:在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,發(fā)展合情推理能力,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

  情感態(tài)度與價值觀:體會數(shù)學(xué)文化的價值,通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。

  二、優(yōu)化數(shù)學(xué)教學(xué)內(nèi)容的呈現(xiàn)方式(一)創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生思考,激發(fā)學(xué)習(xí)興趣。

  1.2002年國際數(shù)學(xué)家大會在北京舉行的意義。

  2.電腦顯示:ICM20xx會標(biāo)。

  3. 會標(biāo)設(shè)計與趙爽弦圖。

  4. 趙爽弦圖與《周髀算經(jīng)》中的“商高問題”。

 。ǘ┩ㄟ^學(xué)生動手操作,觀察分析,實踐猜想,合作交流,人人參與活動,體驗并感悟“圖形”和“數(shù)量”之間的相互聯(lián)系。

  1.觀察網(wǎng)格上的圖形:分別以直角三角形的三邊向外作正方形,三個正方形的面積關(guān)系。再利用幾何畫板演示,引導(dǎo)學(xué)生去觀察,大膽的猜測。

  2.引導(dǎo)學(xué)生將正方形的面積與三角形的邊長聯(lián)系起來,讓學(xué)生進(jìn)行分析、歸納,鼓勵學(xué)生用用語言表達(dá)自己的發(fā)現(xiàn)。采取“個人思考——小組活動——全班交流”的形式。

  3.讓學(xué)生自己任畫一個直角三角形,再次驗證自己的'發(fā)現(xiàn),在此基礎(chǔ)上得到直角三角形三邊的關(guān)系。

  4.電腦演示:銳角三角形、鈍角三角形三邊的平方關(guān)系,從而進(jìn)一步認(rèn)識直角三角形三邊的關(guān)系。

  5.通過幾個練習(xí),了解直角三角形三邊關(guān)系的作用。

 。ㄈ├^續(xù)動手操作實踐,思考探究,拼圖驗證猜想。

  1.學(xué)生動手用準(zhǔn)備好的四個直角三角形拼弦圖。

  2.利用弦圖來驗證勾股定理。采取“個人思考——小組活動——全班交流”的形式。

  (四)拓展延伸,發(fā)揮作為千古第一定理的文化價值。

  1.簡單介紹勾股定理的文化價值。

  2.閱讀:勾股定理成為地球人與“外星人”聯(lián)系的“使者”。

  3.電腦演示:欣賞勾股樹。

  4.推薦進(jìn)一步課外學(xué)習(xí)的網(wǎng)址。

  5.與課頭的“ICM20xx”在中國舉行的意義首尾呼應(yīng),進(jìn)一步激發(fā)學(xué)生追求遠(yuǎn)大目標(biāo),奮發(fā)學(xué)習(xí)。

  本節(jié)課開始我利用了導(dǎo)語中的在北京召開的20xx年國際數(shù)學(xué)家大會的會標(biāo),其圖案為“弦圖”,激發(fā)學(xué)生的興趣。同時出示勾股定理的圖形,讓學(xué)生猜想直角三角形三邊之間的關(guān)系。然后利用正方形網(wǎng)格驗證猜想的正確性,還利用教具在黑板上拼圖,啟發(fā)學(xué)生用面積法得出a2+ b2= c2在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動。然后老師利用多種證法讓學(xué)生參與勾股定理的探索過程,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論,使得這課的重難點輕易地突破,大大提高教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。

勾股定理教學(xué)反思4

  勾股定理應(yīng)用舉例的教學(xué)反思本節(jié)課的教學(xué)目標(biāo)很單一,就是利用勾股定理解決實際問題。我的教學(xué)過程很簡單:在“學(xué)案導(dǎo)學(xué)”中的“課前預(yù)習(xí)案”中首先安排了一個關(guān)于梯子的簡單問題讓學(xué)生利用勾股定理進(jìn)行解決,初步體會到勾股定理與我們的生活密切相關(guān)。在“課上導(dǎo)學(xué)”時用兩只螞蟻要走過最短距離吃芝麻的有趣實例作為例題,引導(dǎo)學(xué)生把看似復(fù)雜的問題轉(zhuǎn)化用勾股定理來解決簡單問題,從而提高學(xué)生用數(shù)學(xué)的能力。

  教后反思:本節(jié)課自認(rèn)為成功之處:實現(xiàn)了學(xué)習(xí)方式的轉(zhuǎn)變。以“學(xué)案”為載體,充分利用“課前預(yù)習(xí)案”、“課上導(dǎo)學(xué)案”、“課后鞏固案”的引導(dǎo)作用,調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,使學(xué)生愛學(xué)、樂學(xué)。充分體現(xiàn)了“教師角色向利于學(xué)生主動、自主、探究學(xué)習(xí)方向轉(zhuǎn)變,讓學(xué)生實現(xiàn)地位、尊嚴(yán)、個性、興趣解放,促成師生之間民主和諧、平等合作關(guān)系”新課改精神。

  數(shù)學(xué)來源于生活,數(shù)學(xué)服務(wù)于生活。從生活實際中得出數(shù)學(xué)知識,再回到實際生活中加以運(yùn)用也是本節(jié)課的一個教學(xué)“亮點”。在本節(jié)課預(yù)習(xí)案中的梯子問題有著學(xué)生非常熟悉的生活背景,課上部分的螞蟻吃芝麻以及課后的渡河要偏離目標(biāo)點的情景相對來說也是學(xué)生比較感興趣的問題,以此引入、深入勾股定理的應(yīng)用,使數(shù)學(xué)教學(xué)在生活情境中得以創(chuàng)新。在課堂中,我積極讓學(xué)生自己動手剪幾個直角三角形邊長為3、4、5;6、8、10;5、12、13,然后用勾股定理驗證,激發(fā)學(xué)生的學(xué)習(xí)興趣,充分地調(diào)動學(xué)生學(xué)習(xí)積極性,給學(xué)生留有思考和探索的余地,讓學(xué)生能在獨立思考與合作交流中解決學(xué)習(xí)中的問題。

  在學(xué)習(xí)中,我注意到了學(xué)生的個體差異,要求不同的學(xué)生達(dá)到不同的學(xué)習(xí)水平。以小組為單位的合作學(xué)習(xí)解決了后進(jìn)生學(xué)習(xí)難的.問題,幫助他們克服了學(xué)習(xí)上的自卑心理。同時,對于一些學(xué)有余力的學(xué)生,教師也為他們提供了發(fā)展的機(jī)會,以小老師的身份去教學(xué)困者,這樣既防止他們產(chǎn)生自滿情緒,又讓他們始終保持著強(qiáng)烈的求知欲望,使他們在完成這種任務(wù)的過程中獲得更大的發(fā)展。這樣大部分學(xué)生都能在老師的幫助下完成學(xué)習(xí)任務(wù),從而增強(qiáng)了學(xué)生的學(xué)習(xí)興趣,降低了認(rèn)知難度。本節(jié)課的不足之處及改進(jìn)方法:學(xué)生在應(yīng)用勾股定理解決問題過程中書寫過程不夠規(guī)范和嚴(yán)謹(jǐn),11---20數(shù)的平方掌握的不好,在計算技巧方面還有在與提高和加強(qiáng)。

  勾股定理的應(yīng)用范圍比較廣,學(xué)生應(yīng)用定理解決實際問題還應(yīng)多練。教學(xué)沒有徹底放開。回憶一下本節(jié)課的教學(xué),我感到我的教學(xué)還是沒有徹底放開,和新的課程理念的要求存在著差距。如教學(xué)設(shè)計中的問題都是教者提出的,“學(xué)案導(dǎo)學(xué)”中的一切活動都是在我精心安排下進(jìn)行的,還是有教師牽著學(xué)生鼻子走的做法。

勾股定理教學(xué)反思5

  本節(jié)課為華東師大八年級上第三章第一節(jié)的內(nèi)容。本節(jié)課開始是利用了多媒體介紹了在北京召開的20xx年國際數(shù)學(xué)家大會的會標(biāo),其圖案為“弦圖”,激發(fā)學(xué)生的興趣。導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)!昂玫拈_始是成功的一半”,在課的起始階段,迅速集中學(xué)生的注意力,把他們思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲,對這堂課教學(xué)的成敗與否起著至關(guān)重要的作用。運(yùn)用多媒體展示這一有意義的圖案,可有效地開啟學(xué)生思維的閘門,激發(fā)聯(lián)想,激勵探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動變?yōu)橹鲃,使學(xué)生在輕松愉悅的氛圍中學(xué)到知識。

  在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的'探索過程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復(fù)演示幾遍,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。學(xué)生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。

  在教學(xué)應(yīng)用勾股定理時,老是運(yùn)用公式計算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學(xué)們一看,興趣來了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時培養(yǎng)了學(xué)生的想像力。

  最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡(luò)資源的重新組織,使學(xué)生對知識的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識,還讓他們有了怎樣學(xué)習(xí)知識的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

勾股定理教學(xué)反思6

  一、教師我的體會:

 、、我根據(jù)學(xué)生實際情況認(rèn)真?zhèn)湔n這節(jié)課,書本總共兩個例題,且兩個例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會比較低,另一方面會使學(xué)生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識、接受新知識,降低學(xué)習(xí)難度。

  把教材讀薄,

 、凇⒊藗浣滩耐,還備學(xué)生。從教案及授課過程也可以看出,充分考慮到了學(xué)生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時,把某些數(shù)學(xué)語言轉(zhuǎn)換成通俗文字來表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂于面對奧妙而又有一定深度的數(shù)學(xué),樂于學(xué)習(xí)數(shù)學(xué)。

 、邸⑿抡n選用的例子、練習(xí),都是經(jīng)過精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識的目的,同時,又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實際,又服務(wù)于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務(wù)。

 、堋⑹褂枚嗝襟w進(jìn)行教學(xué),使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。

  二、學(xué)生體會:

  課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應(yīng)用時,我覺得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會,有相互之間的討論、爭辯等協(xié)作的'機(jī)會,在合作學(xué)習(xí)的過程中共同提高我覺得都是難得的機(jī)會。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的思維能力。

  不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發(fā)展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。

勾股定理教學(xué)反思7

  勾股定理是中學(xué)數(shù)學(xué)幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ)。它緊密聯(lián)系了數(shù)學(xué)中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+ b2= c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位。

  八年級學(xué)生已具備一定的分析與歸納能力,初步掌握了探索圖形性質(zhì)的基本方法 。 但是學(xué)生對用割補(bǔ)方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數(shù)有機(jī)的結(jié)合起來還很陌生。

  基于以上原因,本節(jié)課把學(xué)生的探索活動放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對探究過程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識。從而教給學(xué)生探求知識的方法,教會學(xué)生獲取知識的本領(lǐng)。并確立了如下的教學(xué)目標(biāo):

  1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

  2、讓學(xué)生經(jīng)歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經(jīng)驗,在過程中養(yǎng)成獨立思考、合作交流的'學(xué)習(xí)習(xí)慣;通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感。

  本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察——猜想——歸納——驗證——應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想.另外,我在探索的過程中補(bǔ)充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學(xué)生深刻的體會到了,不是所有三角形三邊都有a2+ b2= c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實驗很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達(dá)到了再次點燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。

  除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動地探求對勾股定理更深入的認(rèn)識、拓展學(xué)生的視野.

  通過這節(jié)課,備課、上課后,我個人還有一些困惑,

  一是問題情境的創(chuàng)設(shè)(放片子),原本的意圖是激發(fā)學(xué)生的學(xué)習(xí)興趣,可是感覺學(xué)生反映平平。創(chuàng)設(shè)什么樣的問題情景更合適?

  二是:探究問題的設(shè)計(放片子),本節(jié)課是一節(jié)典型的探究課,如何設(shè)計探究問題,才能使學(xué)生在探究過程中數(shù)學(xué)學(xué)習(xí)能力得到提高,教學(xué)任務(wù)順利完成并達(dá)到預(yù)期效果?

勾股定理教學(xué)反思8

  本節(jié)課以活動為主線,通過從估算到實驗活動結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過程,最后回到解決生活中實際問題,思路清晰,脈絡(luò)明了。

  例如:活動1問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.

  這個問題意味著,如果圍成的三角形的三邊分別為3、4、5.那么圍成的三角形是直角三角形.

  2、體現(xiàn)了“數(shù)學(xué)源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考,意義讓學(xué)生概括,結(jié)論讓學(xué)生驗證,難點讓學(xué)生突破,以學(xué)生為主體”的'教學(xué)思路。同學(xué)們經(jīng)過操作,觀察,探究,歸納得到直角三角形的判定,由感性認(rèn)識上升到理性認(rèn)識,能力得到提升。

  3、在教學(xué)活動過程中,我經(jīng)常走下講臺,到學(xué)生中去,以學(xué)生身份和學(xué)生一起探討問題。用一切可能的方式,激勵回答問題的學(xué)生,激發(fā)學(xué)生的求知欲,使師生在和諧的教學(xué)環(huán)境中零距離的接觸。課堂上學(xué)生們的思維空前活躍,發(fā)言的人數(shù)不斷增多,學(xué)生能從多角度認(rèn)識問題,爭先恐后地交流不同的意見和方法,收到比較好的效果。

勾股定理教學(xué)反思9

  勾股定理是中學(xué)數(shù)學(xué)幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ).它緊密聯(lián)系了數(shù)學(xué)中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+b2=c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位.

  八年級學(xué)生已具備一定的分析與歸納能力,初步掌握了探索圖形性質(zhì)的基本方法.但是學(xué)生對用割補(bǔ)方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數(shù)有機(jī)的結(jié)合起來還很陌生.

  基于以上原因,本節(jié)課把學(xué)生的探索活動放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對探究過程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識.從而教給學(xué)生探求知識的方法,教會學(xué)生獲取知識的本領(lǐng).并確立了如下的教學(xué)目標(biāo):

  1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

  2、讓學(xué)生經(jīng)歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的`方法,并能有效地解決問題,積累解決問題的經(jīng)驗,在過程中養(yǎng)成獨立思考、合作交流的學(xué)習(xí)習(xí)慣;通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感。

  教學(xué)難點將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.

  本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察--猜想--歸納--驗證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想.另外,我在探索的過程中補(bǔ)充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學(xué)生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實驗很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達(dá)到了再次點燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。

  除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動地探求對勾股定理更深入的認(rèn)識、拓展學(xué)生的視野.

勾股定理教學(xué)反思10

  今后的教學(xué)中:

  (1)立足教材,鉆研教學(xué)大綱的要求;試卷中較多題目是根據(jù)課本的題目改編而來,從學(xué)生的考試情況來看課本的題目掌握不理想,這說明在平時的教學(xué)中對書本的`重視不夠,過多地追求課外題目的訓(xùn)練,但忽略學(xué)生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學(xué)生,讓學(xué)生積極參與到課堂中,多機(jī)會給學(xué)生展示,表演,講題,把思路和方法講出來,使學(xué)生更清淅地理解題目,提升自己對數(shù)學(xué)的理解。多點讓學(xué)生獨立思考,發(fā)現(xiàn)問題,解決問題。

 。2)注重培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。

 。3)加強(qiáng)例題示范教學(xué),培養(yǎng)學(xué)生解題書寫表達(dá)。

  (4)多一些數(shù)學(xué)方法、數(shù)學(xué)思想的滲透,少一些知識的生搬硬套。

  (5)在數(shù)學(xué)教學(xué)過程中,課堂上系統(tǒng)地對數(shù)學(xué)知識進(jìn)行整理、歸納、溝通知識間的內(nèi)在聯(lián)系,形成縱向、橫向知識鏈,從知識的聯(lián)系和整體上把握基礎(chǔ)知識。

 。6)針對學(xué)生的兩極分化,加強(qiáng)課外作業(yè)布置的針對性。讓每個學(xué)生課外有適合的作業(yè)做,對不同層次的學(xué)生布置不同難度的作業(yè),提高課外學(xué)習(xí)的效率,減輕學(xué)生課外作業(yè)的負(fù)擔(dān)。正確看待學(xué)生學(xué)習(xí)數(shù)學(xué)的差異,克服兩極分化。數(shù)學(xué)課堂上多考慮、關(guān)照中下生,讓他們在數(shù)學(xué)課堂上聽得進(jìn),肯用手。

 。7)教師在平時的課堂教學(xué)中必須致力于改變教師的教學(xué)行為和學(xué)生的學(xué)習(xí)方式,加強(qiáng)學(xué)法指導(dǎo),提高學(xué)生的閱讀能力,平時培養(yǎng)學(xué)生的自學(xué)能力,使學(xué)生實實在在地理解課本知識,提高思維能力。平時要關(guān)注課本、關(guān)注運(yùn)算能力、關(guān)注教學(xué)中的薄弱環(huán)節(jié)。

勾股定理教學(xué)反思11

  《勾股定理》為八年級上第三章第一節(jié)的內(nèi)容。教學(xué)的實踐中難免會有一些錯漏,為了彌補(bǔ)教學(xué)中的許多不足,數(shù)學(xué)網(wǎng)特地收集了相關(guān)的《勾股定理》教學(xué)反思人教版,僅供大家參考學(xué)習(xí)。

  導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)!昂玫拈_始是成功的一半”,在課的起始階段,迅速集中學(xué)生的注意力,把他們思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲,對這堂課教學(xué)的成敗與否起著至關(guān)重要的作用。運(yùn)用多媒體展示這一有意義的圖案,可有效地開啟學(xué)生思維的閘門,激發(fā)聯(lián)想,激勵探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動變?yōu)橹鲃,使學(xué)生在輕松愉悅的氛圍中學(xué)到知識。

  本節(jié)課把學(xué)生的探索活動放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對探究過程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識.從而教給學(xué)生探求知識的`方法,教會學(xué)生獲取知識的本領(lǐng).并確立了如下的教學(xué)目標(biāo):

  1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

  2、讓學(xué)生經(jīng)歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經(jīng)驗,在過程中養(yǎng)成獨立思考、合作交流的學(xué)習(xí)習(xí)慣;通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感。

  除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動地探求對勾股定理更深入的認(rèn)識、拓展學(xué)生的視野.

勾股定理教學(xué)反思12

  反思之一:教學(xué)觀念的轉(zhuǎn)變。

  “教師教,學(xué)生聽,教師問,學(xué)生答,教師出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學(xué)生的實踐能力,而且會造成機(jī)械的學(xué)習(xí)知識,形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,《新課標(biāo)》要求老師一定要改變角色,變主角為配角,把主動權(quán)交給學(xué)生,讓學(xué)生提出問題,動手操作,小組討論,合作交流,把學(xué)生想到的,想說的想法和認(rèn)識都讓他們盡情地表達(dá),然后教師再進(jìn)行點評與引導(dǎo),這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會與日劇增。上這節(jié)課前教師可以給學(xué)生布置任務(wù):查閱有關(guān)勾股定理的資料(可上網(wǎng)查,也可查閱報刊、書籍),提前兩三天由幾位學(xué)生匯總(教師可適當(dāng)指導(dǎo))。這樣可使學(xué)生在上這節(jié)課前就對勾股定理歷史背景有全面的理解,從而使學(xué)生認(rèn)識到勾股定理的重要性,學(xué)習(xí)勾股定理是非常必要的,激發(fā)學(xué)生的學(xué)習(xí)興趣,對學(xué)生也是一次愛國主義教育,培養(yǎng)民族自豪感,激勵他們奮發(fā)向上,同時培養(yǎng)學(xué)生的自學(xué)能及歸類總結(jié)能力。

  反思之二:教學(xué)方式的轉(zhuǎn)變。

  學(xué)生學(xué)會了數(shù)學(xué)知識,卻不會解決與之有關(guān)的'實際問題,造成了知識學(xué)習(xí)和知識應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問題,對于學(xué)生實踐能力的培養(yǎng)非常不利的,F(xiàn)在的數(shù)學(xué)教學(xué)到處充斥著過量的、重復(fù)的題目訓(xùn)練。我認(rèn)為真正的教學(xué)方式的轉(zhuǎn)變要體現(xiàn)在這兩個方面:一是要關(guān)注學(xué)生學(xué)習(xí)的過程。首先要關(guān)注學(xué)生是否積極參加探索勾股定理的活動,關(guān)注學(xué)生能否在活動中積思考,能夠探索出解決問題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動過程和所獲得的結(jié)論等;同時要關(guān)注學(xué)生的拼圖過程,鼓勵學(xué)生結(jié)合自己所拼得的正方形驗證勾股定理。二是要關(guān)注學(xué)生學(xué)習(xí)的知識性及其實際應(yīng)用。本節(jié)課的主要目的是掌握勾股定理,體會數(shù)形結(jié)合的思想,F(xiàn)在往往是學(xué)生知道了勾股定理而不知道在實際生活中如何運(yùn)用勾股定理,我們在學(xué)生了解勾股定理以后可以出一個類似于《九章算術(shù)》中的應(yīng)用題:在平靜的湖面上,有一棵水草,它高出水面3分米,一陣風(fēng)吹來,水草被吹到一邊,草尖與水面平齊,已知水草移動的水平距離為6分米,問這里的水深是多少?

  教學(xué)方式的轉(zhuǎn)變在關(guān)注知識的形成同時,更加關(guān)注知識的應(yīng)用,特別是所學(xué)知識在生活中的應(yīng)用,真正起到學(xué)有所用而不是枯燥的理論知識。這一點上在新課標(biāo)中體現(xiàn)的尤為明顯。

  反思之三:多媒體的重要輔助作用。

  課堂教學(xué)中要正確地、充分地引導(dǎo)學(xué)生探究知識的形成過程,應(yīng)創(chuàng)造讓學(xué)生主動參與學(xué)習(xí)過程的條件,培養(yǎng)學(xué)生的觀察能力、合作能力、探究能力,從而達(dá)到提高學(xué)生數(shù)學(xué)素質(zhì)的目的。多媒體教學(xué)的優(yōu)化組合,在幫助學(xué)生形成知識的過程中扮演著重要的角色。通過面積計算來猜想勾股定理或是通過面積割補(bǔ)來驗證勾股定理并不是所有的學(xué)生都是很清楚,教者可通過多媒體來演示其過程不僅使知識的形成更加的直觀化,而且可以提高學(xué)生的學(xué)習(xí)興趣。

  反思之四:轉(zhuǎn)變教學(xué)的評價方式,提高學(xué)生的自信心。

  評價對于學(xué)生來說有兩種評價的方式。一種是以他人評價為基礎(chǔ)的,另一種是以自我評價為基礎(chǔ)的。每個人素質(zhì)生成都經(jīng)歷著這兩種評價方式的發(fā)展過程,經(jīng)歷著一個從學(xué)會評價他人到學(xué)會評價自己的發(fā)展過程。實施他人評價,完善素質(zhì)發(fā)展的他人監(jiān)控機(jī)制很有必要。每個人都要以他人為鏡,從他人這面鏡子中照見自我。但發(fā)展的成熟、素質(zhì)的完善主要建立在自我評價的基礎(chǔ)上,是以素質(zhì)的自我評價、自我調(diào)節(jié)、自我教育為標(biāo)志的。因此要改變單純由教師評價的現(xiàn)狀,提倡評價主體的多元化,把教師評價、同學(xué)評價、家長評價及學(xué)生的自評相結(jié)合。

  在本節(jié)課的教學(xué)中,老師可以從多方面對學(xué)生進(jìn)行合適的評價。如以學(xué)生的課前知識準(zhǔn)備是一種態(tài)度的評價,上課的拼圖能力是一種動手能力的評價,對所結(jié)論的分析是對猜想能力的一種評價,對實際問題的分析是轉(zhuǎn)化能力的一種評價等等。

勾股定理教學(xué)反思13

  教學(xué)目標(biāo)

  一、知識與技能

  1.掌握直角三角形的判別條件。

  2.熟記一些勾股數(shù)。

  3.掌握勾股定理的逆定理的探究方法。

  二、過程與方法

  1.用三邊的數(shù)量關(guān)系來判斷一個三角形是否為直角三角形,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。

  2.通過對Rt△判別條件的研究,培養(yǎng)學(xué)生大膽猜想,勇于探索的創(chuàng)新精神。

  三、情感態(tài)度與價值觀

  1.通過介紹有關(guān)歷史資料,激發(fā)學(xué)生解決問題的愿望。

  2.通過對勾股定理逆定理的探究;培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和創(chuàng)新精神。

  教學(xué)重點探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關(guān)概念及關(guān)系.理解并掌握勾股定理的逆定理,并會應(yīng)用。

  教學(xué)難點理解勾股定理的逆定理的推導(dǎo)。

  教具準(zhǔn)備多媒體課件。

  教學(xué)過程

  一、創(chuàng)設(shè)問屬情境,引入新課

  活動1

 。1)總結(jié)直角三角形有哪些性質(zhì)。

 。2)一個三角形,滿足什么條件是直角三角形?

  設(shè)計意圖:通過對前面所學(xué)知識的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問題的能力。

  師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶。

  本活動,教師應(yīng)重點關(guān)注學(xué)生:①能否積極主動地回憶,總結(jié)前面學(xué)過的舊知識;②能否“溫故知新”。

  生:直角三角形有如下性質(zhì):

 。1)有一個角是直角;

 。2)兩個銳角互余;

 。3)兩直角邊的平方和等于斜邊的平方;

 。4)在含30°角的直角三角形中,30°的角所對的直角邊是斜邊的一半。

  師:那么,一個三角形滿足什么條件,才能是直角三角形呢?

  生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形。

  生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形。

  師:前面我們剛學(xué)習(xí)了勾股定理,知道一個直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來判定它是否為直角三角形呢?我們來看一下古埃及人如何做?

  二、講授新課

  活動2

  問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角。

  這個問題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關(guān)系“32+42=52”。那么圍成的三角形是直角三角形。

  畫畫看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.

  設(shè)計意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動手操作能力和尋求解決數(shù)學(xué)問題的一般方法。

  師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動。教師參與此活動,并給學(xué)生以提示、啟發(fā)。在本活動中,教師應(yīng)重點關(guān)注學(xué)生:①能否積極動手參與;②能否從操作活動中,用數(shù)學(xué)語言歸納、猜想出結(jié)論;③學(xué)生是否有克服困難的勇氣。

  生:我們不難發(fā)現(xiàn)上圖中,第(1)個結(jié)到第(4)個結(jié)是3個單位長度即AC=3;同理BC=4,AB=5.因為32+42=52。我們圍成的三角形是直角三角形。

  生:如果三角形的`三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,發(fā)現(xiàn)6.5cm的邊所對的角是直角,并且2.52+62=6.52.

  再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對的角是直角,且也有42+7.52=8.52.

  是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?

  活動3下面的三組數(shù)分別是一個三角形的三邊長a,b,c

  5,12,13;7,24,25;8,15,17。

  (1)這三組效都滿足a2+b2=c2嗎?

  (2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

  設(shè)計意圖:本活動通過讓學(xué)生按已知數(shù)據(jù)作出三角形,并測量三角形三個內(nèi)角的度數(shù)來進(jìn)一步獲得一個三角形是直角三角形的有關(guān)邊的條件。

  師生行為:學(xué)生進(jìn)一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅信前面猜想出的結(jié)論。

  教師對學(xué)生歸納出的結(jié)論應(yīng)給予解釋,我們將在下一節(jié)給出證明.本活動教師應(yīng)重點關(guān)注學(xué)生:①對猜想出的結(jié)論是否還有疑慮;②能否積極主動的操作,并且很有耐心。

  生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。

  師:很好,我們進(jìn)一步通過實際操作,猜想結(jié)論。

  命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形。

  同時,我們也進(jìn)一步明白了古埃及人那樣做的道理.實際上,古代中國人也曾利用相似的方法得到直角,直至科技發(fā)達(dá)的今天。

勾股定理教學(xué)反思14

  在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復(fù)演示幾遍,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。學(xué)生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。

  在教學(xué)應(yīng)用勾股定理時,老是運(yùn)用公式計算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學(xué)們一看,興趣來了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時培養(yǎng)了學(xué)生的想像力。

  最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的.知識海洋中去尋找知識寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡(luò)資源的重新組織,使學(xué)生對知識的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識,還讓他們有了怎樣學(xué)習(xí)知識的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

  數(shù)學(xué)有與其他學(xué)科不同的特點,自然科學(xué)常發(fā)生新理論代替舊理論的情形,但數(shù)學(xué)不會如此。數(shù)學(xué)學(xué)習(xí)是數(shù)學(xué)發(fā)展史的縮影,是一個累進(jìn)過程。勾股定理是人類幾千年的文化遺產(chǎn),是經(jīng)典的定理,擁有科學(xué)簡潔的數(shù)學(xué)語言。而數(shù)學(xué)教學(xué)的核心不是知識本身,而是數(shù)學(xué)的思維方式。認(rèn)識是個人獨特的構(gòu)造結(jié)果,人的思維活動有強(qiáng)烈的個性特征。每個學(xué)生都有自己的生活背景、家庭環(huán)境,這種特定的文化氛圍,導(dǎo)致不同的學(xué)生有不同的思維方式和解決問題的策略。學(xué)生已有豐富的數(shù)學(xué)活動經(jīng)驗,特別是運(yùn)用數(shù)學(xué)解決問題的策略。學(xué)生只有用自己創(chuàng)造與體驗的方法來學(xué)習(xí)數(shù)學(xué),才能真正地掌握數(shù)學(xué)。因而數(shù)學(xué)教學(xué)要展現(xiàn)數(shù)學(xué)的思維過程,要學(xué)生領(lǐng)會和實現(xiàn)數(shù)學(xué)化,自己去“發(fā)現(xiàn)”結(jié)果。這一課的學(xué)習(xí)就主要通過讓學(xué)生自主地探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動腦動手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實驗室”,學(xué)生通過自己的活動得出結(jié)論、使創(chuàng)新精神與實踐能力得到了發(fā)展。

勾股定理教學(xué)反思15

  勾股定理整章書的內(nèi)容很少,就勾股定理和勾股定理的逆定理,這節(jié)課是勾股定理的第一課時,本節(jié)課主要是和學(xué)生一起探究勾股地理的認(rèn)識。在教學(xué)的過程中感覺有幾個方面需要轉(zhuǎn)變的。

  一、轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。

  由于高效課堂中教學(xué)模式需要進(jìn)行學(xué)生自主討論交流學(xué)習(xí),在探究勾股定理的發(fā)現(xiàn)時分四人一小組由同學(xué)們合作探討作圖,去發(fā)現(xiàn)有的直角三角形的三邊具有這種關(guān)系,有的直角三角形不具有這種性質(zhì)?扇匀蛔C明不了我們的猜想是否正確。之后用拼圖的方法再來驗證一下。讓學(xué)生們拿出準(zhǔn)備好的直角三角形和正方形,利用拼圖和面積計算來證明+ =(學(xué)生分組討論。)學(xué)生展示拼圖方法,課件輔助演示。

  新課標(biāo)下要求教師個人素質(zhì)越來越高,教師自身要不斷及時地學(xué)習(xí)學(xué)科專業(yè)知識,接受新信息,對自己及時充電、更新,而且要具有幽默藝術(shù)的語言表達(dá)能力。既要有領(lǐng)導(dǎo)者的組織指導(dǎo)能力,更重要的是要有被學(xué)生欣賞佩服的魅力,只有學(xué)生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應(yīng)付自如,高效率完成教學(xué)目標(biāo)。

  “教師教,學(xué)生聽,教師問,學(xué)生答,教室出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學(xué)生的實踐能力,而且會造成機(jī)械的學(xué)習(xí)知識,形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動權(quán)交給學(xué)生,讓學(xué)生提出問題,動手操作,小組討論,合作交流,把學(xué)生想到的,想說的想法和認(rèn)識都讓他們盡情地表達(dá),然后教師再進(jìn)行點評與引導(dǎo),這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會與日劇增。

  二、轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會學(xué)習(xí)過程。

  學(xué)生學(xué)會了數(shù)學(xué)知識,卻不會解決與之有關(guān)的實際問題,造成了知識學(xué)習(xí)和知識應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的`普遍問題,對于我們這兒的學(xué)生起點低、數(shù)學(xué)基礎(chǔ)差、實踐能力差,對學(xué)生的各種能力培養(yǎng)非常不利的。課堂中要特別關(guān)注:

  1、關(guān)注學(xué)生是否積極參加探索勾股定理的活動,關(guān)注學(xué)生能否在活動中積思考,能夠探索出解決問題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動過程和所獲得的結(jié)論等;

  2、關(guān)注學(xué)生的拼圖過程,鼓勵學(xué)生結(jié)合自己所拼得的正方形驗證勾股定理。

  3、學(xué)習(xí)的知識性:掌握勾股定理,體會數(shù)形結(jié)合的思想。

  三、提高教學(xué)科技含量,充分利用多媒體。

  勾股定理知識屬于幾何內(nèi)容,而幾何圖形可以直觀地表示出來,學(xué)生認(rèn)識圖形的初級階段中主要依靠形象思維。對幾何圖形的認(rèn)識始于觀察、測量、比較等直觀實驗手段,現(xiàn)代兒童認(rèn)識幾何圖形亦如此,可以通過直觀實驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的情形,例如有無數(shù)種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進(jìn)行直觀實驗所得到的認(rèn)識,一定適合其他情況驗回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置。

  培養(yǎng)邏輯推理能力,作了認(rèn)真的考慮和精心的設(shè)計,把推理證明作為學(xué)生觀察、實驗、探究得出結(jié)論的自然延續(xù)。教科書的幾何部分,要先后經(jīng)歷“說點兒理”“說理”“簡單推理”幾個層次,有意識地逐步強(qiáng)化關(guān)于推理的初步訓(xùn)練,主要做法是在問題的分析中強(qiáng)調(diào)求解過程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習(xí)慣。

  由于信息技術(shù)的發(fā)展與普及,直觀實驗手段在教學(xué)中日益增加,本節(jié)課利用我們學(xué)校建立了電教教室,通過制作課件對于幾何學(xué)的學(xué)習(xí)起到積極作用。

【勾股定理教學(xué)反思】相關(guān)文章:

《勾股定理逆定理》的教學(xué)反思06-11

八年級勾股定理教學(xué)反思09-22

《勾股定理》的說課稿01-18

《勾股定理》說課稿01-04

【推薦】《勾股定理》說課稿01-06

勾股定理說課稿范文08-28

《勾股定理》優(yōu)秀說課稿09-22

探索《勾股定理》說課稿01-04

《勾股定理》說課稿【精】01-06