国产婷婷在线精品综合_97人妻AⅤ一区二区精品_熟妇人妻中文字幕无码_国产一级黄片在线免费观看

您的位置:群走網(wǎng)>教學(xué)資源>教學(xué)反思>簡易方程教學(xué)反思
簡易方程教學(xué)反思
更新時(shí)間:2024-08-06 05:12:31
  • 相關(guān)推薦
簡易方程教學(xué)反思(精選15篇)

  身為一名剛到崗的教師,課堂教學(xué)是我們的任務(wù)之一,寫教學(xué)反思能總結(jié)教學(xué)過程中的很多講課技巧,怎樣寫教學(xué)反思才更能起到其作用呢?下面是小編幫大家整理的簡易方程教學(xué)反思,希望對(duì)大家有所幫助。

簡易方程教學(xué)反思1

  在這節(jié)課的教學(xué)中,我從以下幾個(gè)方面入手:

  一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。

  在學(xué)習(xí)中,我以多媒體中天平的平衡來呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時(shí)加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來學(xué)生感覺活動(dòng)是獲取真知的有效途徑,通過以上的活動(dòng),學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。

  二、等式性質(zhì)解方程——初步感悟它的妙用

  在課堂上學(xué)生對(duì)用等式的性質(zhì)來解方程感到很陌生,在他們?cè)械慕?jīng)驗(yàn)中更喜歡用加減法各部分的關(guān)系來解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識(shí)到用等式的性質(zhì)來解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來解方程的習(xí)慣。

  在整節(jié)課的教學(xué)中,其實(shí)學(xué)生是非常主動(dòng)的,他們總覺得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對(duì)方程都有一種難以割舍的好奇心。

  新課程的改革,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑

  1、從教材的編排上,整體難度下降,有意避開了,形如:45—方程=23 24÷方程=6等類型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)方程前面是減號(hào)或除號(hào)的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時(shí),我們并不能刻意地強(qiáng)調(diào)學(xué)生不會(huì)列出方程在后面的方程,我們更頭痛于學(xué)生的'實(shí)際解答能力。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對(duì)于好的學(xué)生來說,我們會(huì)讓他們嘗試接受——解答方程在后面這類方程的解答方法,就是等號(hào)二邊同時(shí)加上方程,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。

  2、內(nèi)容看似少實(shí)際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實(shí)際上反而是多了。教師要給他們補(bǔ)充方程前面是除號(hào)或減號(hào)的方程的解法。要教他們列方程時(shí)怎么避免方程前面是除號(hào)或減號(hào)的方程的出現(xiàn)等等。

簡易方程教學(xué)反思2

  《解簡易方程》教學(xué)反思數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來教學(xué)解方程,F(xiàn)將解方程的新舊方法舉例如下:

  老方法:

  x + 4 = 20

  x = 20-4

  依據(jù)運(yùn)算之間的關(guān)系:一個(gè)加數(shù)等于和減另一個(gè)加數(shù)。

  新方法:

  x + 4 = 20

  x + 4-4=20-4

  依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

  改革的原因(摘自教學(xué)參考書):

  新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。

  從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。

  那么,小學(xué)生學(xué)這樣的方法,實(shí)際操作中會(huì)出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的教學(xué)過程中真的出現(xiàn)了問題 。

  1.無法解如a-x=b和ax=b此類的方程

  新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結(jié)為等式兩邊同時(shí)除以(乘上)a。這就是所謂相比原來方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個(gè)相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學(xué)生還沒有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,利用等式的基本性質(zhì)解a-x=b,方程變形的過程及算理解釋比較麻煩;而ax=b的方程,因?yàn)槠浔举|(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。

  我認(rèn)為為了要運(yùn)用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的.是,回避這兩類方程,新教材認(rèn)為并不影響學(xué)生列方程解決實(shí)際問題。因?yàn)楫?dāng)需要列出形如a-x=b或ax=b的方程時(shí),總是要求學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時(shí)更會(huì)無法避免地直接和方程思想發(fā)生矛盾。

  如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?

  合理的做法應(yīng)是設(shè)桃子每千克X元,從順向思考,列出方程為2.53-5X=0.5。然而,按新教材的編排,因?yàn)閷W(xué)生現(xiàn)在不會(huì)解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成5X+0.5=2.53之類的方程。又如:課本第62頁中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學(xué)生根據(jù)爸爸比小明大28歲列出40-Х=28,可是無法求解,所以又轉(zhuǎn)成Х+28=40。

  很明顯,第二個(gè)方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問題更加直接自然。為實(shí)現(xiàn)這個(gè)目標(biāo),很重要的一點(diǎn),就是列式時(shí)應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實(shí)上,如果學(xué)生能夠列成5X+0.5=2.53 Х+28=40那就說明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時(shí),用算術(shù)方法即可,哪還有列方程來解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識(shí)方程的優(yōu)越性呢?

  我們不難看出,根據(jù)現(xiàn)實(shí)情境列方程解決問題,X當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見、很必要的現(xiàn)象。要學(xué)生學(xué)會(huì)解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。

  2.解方程的書寫過程太繁瑣

  教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來了書寫上的繁瑣。

  因?yàn)橛玫仁交拘再|(zhì)解方程,每兩步才能完成一次方程的變形。這相對(duì)于簡單的方程,尚沒什么,但對(duì)一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了

  從這兩個(gè)方面來看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運(yùn)用它來解方程,在實(shí)際操作中,也存在許多的現(xiàn)實(shí)問題。那么,如果說用算術(shù)思路解方程對(duì)初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,那我們又如何是好呢?

簡易方程教學(xué)反思3

  本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。

  1.本課主要對(duì)解方程進(jìn)行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!

  2、通過本課的作業(yè)檢測,有少量學(xué)生還是對(duì)本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。

  3、學(xué)生對(duì)于方程的書寫格式掌握的很好,這一點(diǎn)很讓人欣喜.

  人教版五年級(jí)數(shù)學(xué)上冊(cè)《解方程》教學(xué)反思

  解方程是數(shù)學(xué)領(lǐng)域里一個(gè)關(guān)鍵的知識(shí),在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。

  而如今五年級(jí)的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)解題,還是運(yùn)用書本的“等式性質(zhì)解題,面對(duì)困惑,向老教師請(qǐng)教,原來還有第三種老教材的'“四則運(yùn)算之間的關(guān)系解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)解題時(shí),在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系老教材的方式改變,必有他的理由,能用嗎?

  困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類的方程。

簡易方程教學(xué)反思4

  在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用加減乘除各部分之間的關(guān)系來求出方程中的未知數(shù),而今的人教版教材的設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法,而是借用天平使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個(gè)數(shù),等式仍然成立”這個(gè)規(guī)律,這樣就能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會(huì)解方程,還能使之與中學(xué)的移項(xiàng)解方程建立起聯(lián)系。在這節(jié)課的教學(xué)中,我從以下幾個(gè)方面入手:

  一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。

  1、在學(xué)習(xí)中,我以天平的平衡來呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時(shí)加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來學(xué)生感覺比較抽象,我引導(dǎo)學(xué)生在反復(fù)操作中理解加、減一個(gè)數(shù)的目的和依據(jù)。

  我在天平的左側(cè)放5克砝碼,右側(cè)也放5克砝碼。(拋磚引玉)

  2、學(xué)生親自動(dòng)手反復(fù)不斷的進(jìn)行操作。(學(xué)生動(dòng)手操作)

  在此基礎(chǔ)上,我再做進(jìn)一步的引導(dǎo)。

  活動(dòng)是獲取真知的有效途徑,通過以上的活動(dòng),學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。

  3、教師:請(qǐng)同學(xué)們都想一想,如果天平兩側(cè)都減去相同的質(zhì)量,天平會(huì)出現(xiàn)什么現(xiàn)象?你能列出幾個(gè)這樣的方程嗎?(學(xué)生同桌之間通過充分地交流,反饋交流結(jié)果,學(xué)生得知,如果我們把天平作為一個(gè)等式(當(dāng)天平平衡時(shí))的話,等式的兩邊都減去同一個(gè)數(shù),等式仍然成立。通過引導(dǎo),學(xué)生能完全得出了等式的性質(zhì)。最后我們通過學(xué)生自己的整理和總結(jié),把以上發(fā)現(xiàn)的性質(zhì)合二為一。得出:等式的兩邊都加上(或減去)同一個(gè)數(shù),等式仍然成立。

  二、利用等式性質(zhì)解方程——初步感悟它的妙用

  在課堂上學(xué)生對(duì)用等式的性質(zhì)來解方程感到很陌生,在他們?cè)械慕?jīng)驗(yàn)中更喜歡用加減法各部分的關(guān)系來解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識(shí)到用等式的性質(zhì)來解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來解方程的習(xí)慣。

  在整節(jié)課的教學(xué)中,其實(shí)學(xué)生是非常主動(dòng)的,他們總覺得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對(duì)方程都有一種難以割舍的好奇心。

  告訴學(xué)生利用等式的'性質(zhì)來解方程熟練以后特別快。同時(shí)強(qiáng)調(diào)書寫格式。通過教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡單的方程,但我認(rèn)為利用等式性質(zhì)解方程的方法單一化,內(nèi)容雖少問題很多。其表現(xiàn)在:

  1、從教材的編排上,整體難度下降,有意避開了形如:66—2方程=30等類型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)方程在后面的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時(shí),我們并不能刻意地強(qiáng)調(diào)學(xué)生不會(huì)列出方程在后面的方程嗎?我們更頭痛于學(xué)生的實(shí)際解答能力。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對(duì)于好的學(xué)生來說,我們會(huì)讓他們嘗試接受——解答方程在后面這類方程的解答方法,就是等號(hào)二邊同時(shí)加上方程,再左右換位置,再二邊減一個(gè)數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。

  2、內(nèi)容看似少實(shí)際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可實(shí)際上反而是多了。教師要給他們補(bǔ)充方程在后面的方程的解法。要教他們列方程時(shí)怎么避免方程在后面這樣方程的出現(xiàn)等等。因此,我干脆就又把原來的老方法交給同學(xué)們,以便備用或請(qǐng)他們根據(jù)具體情況選擇適當(dāng)?shù)慕忸}方法。

  3、我個(gè)人認(rèn)為:現(xiàn)行教材的某些地方還有待于進(jìn)一步的改進(jìn)與完善。

簡易方程教學(xué)反思5

  本課為人教版第四單元教學(xué)內(nèi)容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質(zhì)來教學(xué)解方程。形如x±a=b一類的方程利用等式的基本性質(zhì)一學(xué)生很容易解決,形如ax=b與x÷a=b一類的方程,利用等式的基本性質(zhì)二學(xué)生也很容易解決。但行如a-x=b和a÷x=b此類的方程,學(xué)生就無從下手了,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩。解決問題時(shí)當(dāng)需要列出形如a-x=b或a÷x=b的方程時(shí),我就要求學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我覺得回避這兩類問題不是很好的方法,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷x=8,但是利用等式的基本性質(zhì)學(xué)生就不會(huì)解,但你也不能說這個(gè)方程列錯(cuò)了呀。

  因此我當(dāng)有學(xué)生列了a-x=b或a÷x=b的方程時(shí),我借機(jī)教了利用算術(shù)思路解方程(被減數(shù)=差+減數(shù),被除數(shù)=商xx除數(shù))介紹老板教材的解方程的方法;A(chǔ)好的孩子就容易接受新的方法,而基礎(chǔ)差的孩子就還是無法解答此類問題。

  另外教材要求,在學(xué)生用等式基本性質(zhì)解方程時(shí),方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的.要求,在實(shí)際操作中,帶來了書寫上的繁瑣。因?yàn)橛玫仁交拘再|(zhì)解方程,每兩步才能完成一次方程的變形。這相對(duì)于簡單的方程,尚沒什么,但對(duì)一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了。

  看來教材利用等式的基本性質(zhì)來解簡易方程也是存在著一些問題,不知各位老師有什么好的方法來解決這些問題呢?請(qǐng)不吝賜教!

簡易方程教學(xué)反思6

  現(xiàn)行第九冊(cè)數(shù)學(xué)是新課程標(biāo)準(zhǔn)教材實(shí)施改革新內(nèi)容,其中的利弊在于:

  1、教改方向有點(diǎn)聚向七年級(jí)的教學(xué)方法,意圖是與七年級(jí)的教學(xué)接軌,這種設(shè)計(jì)本來是一件好事,讓小學(xué)生盡快接受初中一年級(jí)(七年級(jí))教學(xué)方法,并為七年級(jí)打下良好的學(xué)習(xí)基礎(chǔ)。

  2、課程改革改在五年級(jí)第一學(xué)期就有點(diǎn)不夠恰當(dāng)了,因?yàn)槲迥昙?jí)第一學(xué)期既沒有學(xué)約分,更沒有學(xué)六年級(jí)的倒數(shù),這樣使教師教起來非常困難,學(xué)生對(duì)這個(gè)知識(shí)的掌握也十分艱難。如:解方程:20÷2X=10如果用舊知識(shí)來解答是非常容易的,是根據(jù)“除數(shù)=被除數(shù)÷商”,就可以求出2X。再根據(jù)“一個(gè)因數(shù)=積÷另一個(gè)因數(shù)”就可以求出X了。

  而新教材的教法是方程兩邊同時(shí)×2X,先把方程左邊的2X消去,而20÷2X×2X從小學(xué)的算理上講,應(yīng)該是從左往右算,(在三至五年級(jí)學(xué)混合運(yùn)算都是這樣要求學(xué)生計(jì)算的)這樣就會(huì)使學(xué)生在心理上出現(xiàn)矛盾,很難接受這種算法;即使學(xué)生接受了這種算法,方程的右邊出現(xiàn)了10×2X,這時(shí)又要在方程的兩邊同時(shí)除以10,便得到2=2X,再把2X和2調(diào)換位置,成為2X=2,然后再方程兩邊同時(shí)除以2,才求出X=1,這種算法既費(fèi)時(shí),對(duì)成績中等以下的學(xué)生又難理解,就會(huì)導(dǎo)致相當(dāng)部分學(xué)生對(duì)這部分知識(shí)落下,并對(duì)今后的學(xué)習(xí)會(huì)都產(chǎn)生厭學(xué)情緒,不利于小學(xué)生對(duì)知識(shí)的掌握,更激發(fā)不起學(xué)生學(xué)習(xí)的積極性。

  3、在稍復(fù)雜的`方程的內(nèi)容安排上也欠妥。在這一內(nèi)容上,學(xué)習(xí)解稍復(fù)雜的方程的方法和列方程解應(yīng)用題同時(shí)進(jìn)行,在同一節(jié)課要解決兩個(gè)對(duì)于小學(xué)生來說都是難點(diǎn)的學(xué)習(xí)內(nèi)容,至于教師是沒問題的,但對(duì)學(xué)生來說難度就大了,首先,前面所說的解方程是比較簡單的方程,相當(dāng)部分學(xué)生學(xué)得一塌糊涂,再進(jìn)行學(xué)習(xí)稍復(fù)雜的方程更難掌握。

  其次,正是有稍復(fù)雜的方程解答方法不能完全掌握,在學(xué)生的心理上就有解不開的結(jié),所以對(duì)怎樣運(yùn)用好的方法去進(jìn)行列出解應(yīng)用題的方程,那就更難掌握,因此,有部分學(xué)生把這一知識(shí)采用的學(xué)習(xí)方法的放棄,這就不利于學(xué)生的學(xué)習(xí),更不能達(dá)到為七年級(jí)打好基礎(chǔ)的目的。

  以上三點(diǎn)是本人在教簡易方程中感受最深的淺見,不知各位同行是否有這種感受,請(qǐng)各位同行多提這新教材好教學(xué)方法,本人樂意接受。謝謝!

簡易方程教學(xué)反思7

  在通讀教參時(shí)我初步感受到:簡易方程太容易了,學(xué)生一學(xué)肯定能掌握好。本單元引入等式性質(zhì)進(jìn)行教學(xué)解方程的方法,簡單的一句話,只要記住同加、同減、同乘、同除就行了,這有什么難的。

  正如我所想的,聰明的學(xué)生一學(xué)就會(huì),并且掌握的很好,但學(xué)生是參差不齊的,一小部分學(xué)生通過月考可以看出來,他們掌握的還是不好。怎么了?講了一遍又一遍怎么還沒掌握住?不行,我還的.從類型與多加練習(xí)下手,就不相信他們學(xué)不會(huì)。接下來我就把方程總結(jié)成六種類型,每組每天出一道題,課前三分鐘做完。剛開始肯定是做不完的,就利用上課的一點(diǎn)時(shí)間讓學(xué)生做完。一天一天過去了,通過批改發(fā)現(xiàn)孩子們進(jìn)步了、掌握了。我反省到:

  看來數(shù)學(xué)不能只站在某一個(gè)點(diǎn)上做“井底之蛙”的狹隘的教學(xué),教師不僅僅從本單元、本年級(jí)、本學(xué)段和小學(xué)范疇內(nèi)分析把握教學(xué)內(nèi)容,更應(yīng)該從學(xué)生發(fā)展和為學(xué)生發(fā)展服務(wù)的意識(shí)上把握教學(xué)內(nèi)容。

  在課堂上學(xué)生多次通過觀察就發(fā)現(xiàn)未知數(shù)的值是多少,但卻還要把煩瑣的過程寫出來。

  例如:

  X+1.2=8,根據(jù)等式的性質(zhì),學(xué)生很容易發(fā)現(xiàn)兩邊同減1.2,得出X=6.8。寫出過程是:

  X+1.2=8,

  解:X+1.2-1.2=8-1.2

  X=6.8

  在寫過程時(shí)學(xué)生習(xí)慣根據(jù)加、減、乘、除運(yùn)算之間的關(guān)系來寫,面對(duì)如上的繁雜過程接受的緩慢,無奈。

  本單元的教學(xué)使我對(duì)新教材和新課標(biāo)又加深了認(rèn)識(shí),也許當(dāng)完整的教學(xué)完本單元的知識(shí)時(shí)又會(huì)有新的理解和收獲。

簡易方程教學(xué)反思8

  本節(jié)課例題的教學(xué)注意利用三個(gè)等量關(guān)系列出三個(gè)不同的方程,讓學(xué)生自主討論、列出,并利用學(xué)過的解方程知識(shí)嘗試解方程。注意讓學(xué)生比較選擇,讓學(xué)生明了順著題意列方程更簡潔。注意讓學(xué)生總結(jié)用方程解決問題的步驟,引導(dǎo)總結(jié)出五大步驟后,進(jìn)一步引導(dǎo)出每一個(gè)步驟取一個(gè)字,進(jìn)而總結(jié)為“設(shè)、找、列、解、驗(yàn)”,比數(shù)學(xué)課本上總結(jié)的步驟更加簡潔容易記憶。

  在列方程解決實(shí)際問題的教學(xué)過程中,教師教的重點(diǎn)和學(xué)生學(xué)的重點(diǎn),不在于“解”,而在于“學(xué)解”。注重的是解決問題的過程。也就是說,要讓學(xué)生經(jīng)歷尋找實(shí)際問題中數(shù)量之間的相等關(guān)系并列方程解答的全過程。

  本節(jié)課的教學(xué)設(shè)計(jì),注重讓學(xué)生分析條件、問題,讓學(xué)生首先理解題意,然后讓學(xué)生通過分析、交流、討論等活動(dòng),找出等量關(guān)系,充分展示他們的思維過程,發(fā)展思維能力。 應(yīng)用題的教學(xué)難點(diǎn)就是:如何引導(dǎo)學(xué)生理解題意,列出需要的數(shù)量關(guān)系式或等量關(guān)系式。在這個(gè)過程中,重要的并不是展示學(xué)生的方法如何多,因?yàn)榻鉀Q辦法是可以舉一反三的,重要的應(yīng)該是引導(dǎo)學(xué)生如何通過分析,找出等量關(guān)系式的過程。同時(shí),在分析過程中,讓學(xué)生掌握多種辦法來分析。如通過抓關(guān)鍵句、關(guān)鍵詞、關(guān)鍵字列等量關(guān)系式。

  本節(jié)課教學(xué)設(shè)計(jì)注意總結(jié)回顧方法,讓學(xué)生總結(jié)用方程解決問題的.步驟,引導(dǎo)總結(jié)出五大步驟后,進(jìn)一步引導(dǎo)出每一個(gè)步驟取一個(gè)字,進(jìn)而總結(jié)為“設(shè)、找、列、解、驗(yàn)”,比數(shù)學(xué)課本上總結(jié)的步驟更加簡潔容易記憶。

  在小組合作方面,本節(jié)課主要在分析等量關(guān)系,根據(jù)等量關(guān)系列方程兩個(gè)環(huán)節(jié)給孩子們小組合作探討交流的時(shí)間?v觀本節(jié)課小組合作有利于學(xué)生理解掌握題中的數(shù)量關(guān)系,找出等量關(guān)系,根據(jù)等量關(guān)系列方程。我們學(xué)校本學(xué)期開展的是基于導(dǎo)學(xué)案學(xué)習(xí)基礎(chǔ)上的小組合作學(xué)習(xí),導(dǎo)學(xué)案有三分之二的學(xué)生能基本完成,三分之一的學(xué)生基本不做、做的很少、干脆不做。導(dǎo)學(xué)案的學(xué)習(xí)非常有利于學(xué)生的學(xué)習(xí),能加快上課的節(jié)奏,加大練習(xí)量,但對(duì)于不預(yù)習(xí)、不做導(dǎo)學(xué)案的學(xué)生上課效果大打折扣。基于導(dǎo)學(xué)案學(xué)習(xí)出現(xiàn)的現(xiàn)象是“優(yōu)者更優(yōu)”,“弱者被動(dòng)挨打”“積弱者更弱”。關(guān)鍵是怎樣調(diào)動(dòng)學(xué)生積極性,怎樣讓家長配合老師,讓學(xué)生做好提前預(yù)習(xí),讓學(xué)生提前預(yù)習(xí)好導(dǎo)學(xué)案。這樣才能目的效果兼收。

簡易方程教學(xué)反思9

  學(xué)生經(jīng)歷由天平上的具體操作抽象為代數(shù)問題的過程,能用等式的性質(zhì)(天平平衡的道理)列出方程,對(duì)于解比較簡單的方程,學(xué)生并不陌生。

  比如:x+4=7學(xué)生能夠很快說出x=3,但是就方程的書寫規(guī)范來說,有必要一開始就強(qiáng)化訓(xùn)練,老師規(guī)范的板書,以發(fā)揮首次感知先入為主的.強(qiáng)勢效應(yīng),促進(jìn)良好的書寫習(xí)慣的形成。對(duì)于稍復(fù)雜的方程要放手讓學(xué)生去試一試,這樣就可以使探究式課堂教學(xué)進(jìn)入一個(gè)理想的境界。

  不難看出,學(xué)生經(jīng)歷了把運(yùn)算符號(hào)+看錯(cuò)成了-,又自行改正的過程,在這一過程中學(xué)生體驗(yàn)到了緊張、焦急、期待,成功的感覺,這時(shí)的數(shù)學(xué)學(xué)習(xí)已進(jìn)入了學(xué)生的內(nèi)心,并成為學(xué)生生命成長的過程,真正落實(shí)了《數(shù)學(xué)課程標(biāo)準(zhǔn)》中在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自信心的目標(biāo),在這個(gè)思維過程中,學(xué)生獲得了情感體驗(yàn)和發(fā)現(xiàn)錯(cuò)誤又自己解決問題的機(jī)會(huì)。老師以人為本,充分尊重學(xué)生,也體現(xiàn)在耐心的等待,熱切的期待的教學(xué)行為上,老師的教學(xué)行為充滿了人文關(guān)懷的氣息,微笑的臉龐、期待的眼神、鼓勵(lì)的話語,無時(shí)無刻不使學(xué)生感到這不僅是數(shù)學(xué)學(xué)習(xí)的過程,更是一種生命交往的過程,學(xué)生有了很安全的心理空間,不然,他怎么會(huì)對(duì)老師說老師,我太緊張了,這是學(xué)生對(duì)老師的信任和自己不安的復(fù)雜情緒的表現(xiàn)。反思我們的教學(xué)行為,如果在課堂中多一些耐心和期待,就會(huì)有更多的愛灑向更多的學(xué)生,學(xué)生的人生歷程中就會(huì)多一份信心,多一份勇氣,多一份靈氣。

簡易方程教學(xué)反思10

  解方程是數(shù)學(xué)領(lǐng)域里一塊兒重要內(nèi)容,在實(shí)際生活中,學(xué)會(huì)了列方程解決問題之后,很多不易用算術(shù)方法解答的習(xí)題,卻能列方程很容易地解答出來,這足以說明列方程解決問題比算術(shù)法解決問題有非常明顯的優(yōu)越性。

  今年我教的是四年級(jí),所用教材是青島版五四制教材,第一單元就出現(xiàn)了解方程的內(nèi)容,這部分教材我已經(jīng)教學(xué)了四遍了,按理說這第五次教學(xué)這部分內(nèi)容應(yīng)該是易如反掌、揮灑自如,可是面對(duì)新教材的設(shè)計(jì),我這個(gè)五年不教學(xué)高年級(jí)的老師卻有了很大困惑----本教材的教學(xué)設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法,而出乎我預(yù)料的則是借用天平演示使學(xué)生感悟“等式”,知道“等式兩邊都加上或減去都乘或除以同一個(gè)非零的數(shù),等式仍然成立”這個(gè)規(guī)律,從而使學(xué)生進(jìn)一步從真正意義上理解方程的意義,并學(xué)會(huì)運(yùn)用等式的性質(zhì)解方程。在以前幾輪教材中,學(xué)習(xí)解方程之前都是先要求學(xué)生熟練掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差;減數(shù)=被減數(shù)-差;被除數(shù)=商×除數(shù);除數(shù)=被除數(shù)÷商等關(guān)系式來求出方程的解,就連我自己小時(shí)候?qū)W習(xí)的解方程也都是根據(jù)加減、乘除法各部分之間的關(guān)系求方程的解的。

  開始我有些懷疑,以為只有青島版五四制這個(gè)版本的教材利用了等式的性質(zhì)教學(xué)的,于是急切的打開電腦找到各種版本的電子教材翻看這部分內(nèi)容,卻發(fā)現(xiàn)各種版本的教材設(shè)計(jì)思路是一樣的,都是先學(xué)習(xí)等式的基本性質(zhì),接著再運(yùn)用等式的基本性質(zhì)解方程。為了徹底弄明白教材的編寫意圖,我又找到了這幾個(gè)版本的教材所配套的教師教學(xué)用書翻看,新教材編寫者大致都是這樣解釋的:長期以來,小學(xué)教學(xué)簡易方程時(shí),方程變形的依據(jù)總是加減、乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接?戳诉@些內(nèi)容,我才從思想上認(rèn)可了這種設(shè)計(jì)思路,原來是為了使小學(xué)教學(xué)解方程和中學(xué)教學(xué)解方程的方法保持一致。

  理解了教材的設(shè)計(jì)意圖,我開始強(qiáng)迫自己扭轉(zhuǎn)老的教學(xué)思路。結(jié)果學(xué)生因?yàn)槭浅醮谓佑|,課堂上學(xué)習(xí)的竟是那樣的有滋有味。但在后面的`教學(xué)中,我漸漸發(fā)現(xiàn)采用等式的基本性質(zhì)解方程給學(xué)生帶來的竟然是局部的銜接,而存在局部的銜接對(duì)學(xué)生會(huì)更困難。從教材的編排上,整體難度雖然有所下降,卻把用等式的性質(zhì)解方程的方法單一化了。教材有意避開了形如a—x=b a÷x=b等類型的題目,不教學(xué)此類方程的求解方法,因?yàn)檫@類題目如果采用等式的性質(zhì)來解非常麻煩。很顯然采用等式的性質(zhì)這種方法教學(xué)小學(xué)階段的解方程目前存在著很大的局限性。

  但在教學(xué)列方程解決實(shí)際問題時(shí),我們又不能避免學(xué)生在列方程時(shí),依然出現(xiàn)形如a-x=b和a÷x=b的方程,特別是我們不能刻意地給學(xué)生強(qiáng)調(diào)不能列出x在后面做減數(shù)或做除數(shù)的方程,如果這樣強(qiáng)調(diào),學(xué)生心中會(huì)存在很大的疑惑,當(dāng)學(xué)生列出這樣的方程時(shí),我們更頭痛于學(xué)生求解能力的局限性。

  鑒于以上原因,課堂上我采用了新老教學(xué)思路結(jié)合使用的方法,先從教材中的新思路運(yùn)用等式的基本性質(zhì)教會(huì)孩子解較簡單的方程,以便于日后初中學(xué)習(xí)時(shí)順利接軌,同時(shí)對(duì)于初中學(xué)習(xí)“移項(xiàng)”也能順利接收。但是面對(duì)現(xiàn)在四年級(jí)孩子的思維及接受能力,我再利用老教材的教學(xué)思路“加減、乘除法各部分之間的關(guān)系”教給孩子解方程,至少這樣能讓我的學(xué)生會(huì)解各種類型的方程,特別是有利于孩子們列方程解決實(shí)際問題,他們不會(huì)再被“以乘代除”、“以加代減”的思路困擾著列方程,并且列出來還能順利解這個(gè)方程。

  我個(gè)人以為,這樣用新舊方法結(jié)合著教學(xué),既能讓學(xué)生為以后的學(xué)習(xí)做好銜接,形成綠色的通道,同時(shí)又體現(xiàn)解決同一問題方法、思路的多樣性。通過學(xué)生的課堂作業(yè),我發(fā)現(xiàn)教學(xué)效果出奇的好。

  通過解方程這部分內(nèi)容的教學(xué),我感到不論你的教齡有多長,你對(duì)同一教學(xué)內(nèi)容教學(xué)了有幾遍,每次教學(xué)都需要教師靜下心來好好的研究教材教法,這樣才能用最適合學(xué)生未來發(fā)展的方法去教學(xué)生。

簡易方程教學(xué)反思11

  長期以來,小學(xué)教學(xué)簡易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù),解簡易方程教學(xué)反思。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的'方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接,教學(xué)反思《解簡易方程教學(xué)反思》。通教材的老師也主張用等式的基本性質(zhì)解方程。

  在我的教學(xué)過程中卻出現(xiàn)了這樣的問題 ,利用等式的基本性質(zhì)解形如x+a=b與x-a=b, ax=b與x÷a=b一類的方程,學(xué)生方法掌握起來比較簡單。但寫起來比較繁瑣。然而遇到a-x=b、a÷x=b的方程時(shí),由于小學(xué)生還沒有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩;但是在教學(xué)過程中我們不可避免地會(huì)遇到根據(jù)現(xiàn)實(shí)情境從順向思考列出X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程,要學(xué)生學(xué)會(huì)解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會(huì)顯得片面和狹隘。于是,我又要求學(xué)生遇到X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程時(shí),要求學(xué)生會(huì)用減法和除法各部分之間的關(guān)系來做。但是,我發(fā)現(xiàn)這讓有些孩子無所適從。我現(xiàn)在感到很困惑,我們到底怎樣做才是合理得呢?懇請(qǐng)各位老師指教。

簡易方程教學(xué)反思12

  在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識(shí),效果較好。

  出示例題2,小組合作學(xué)習(xí),討論:

 、倌闶窃鯓永斫鈭D意的?

 、谀闶侨绾瘟蟹匠痰?

  ③你是根據(jù)什么解方程的?

  ④怎樣檢驗(yàn)方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。

  指名回答,說說自己的分析。你對(duì)他的'分析有什么要問的嗎?

  教師總結(jié)解題關(guān)鍵。

  教學(xué)例3時(shí),讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個(gè)人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。

  最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識(shí)?解方程的關(guān)鍵是什么?

  充分練習(xí),進(jìn)行思維訓(xùn)練,設(shè)計(jì)有趣的習(xí)題“幫小兔找家”:

  4x-12=20 3x=15 x+7=15 2x+3×2=

  18-2x=2 15÷3+4x=

  鞏固知識(shí),激發(fā)興趣。

簡易方程教學(xué)反思13

  記得我以前上學(xué)的時(shí)候,解最簡單的方程的方式是這樣的:比如方程+5=8就是方程=8-5,方程=3。那時(shí)覺得很好懂,但是現(xiàn)在五年級(jí)課本上是這樣的:方程+5=8,方程+5-5=8-5,方程=3?雌饋肀容^復(fù)雜。開始接觸到這個(gè)課程時(shí)看到教材例題中的解法感覺很疑惑,百思不得其解。為什么新課程的“解方程”教學(xué)要“繞遠(yuǎn)路”?如果單單從簡單的加減乘除的.方程來看,第一種方法無疑是簡單易懂而且步驟少,而第二種方法就相對(duì)復(fù)雜了。那教材這樣改的目的是什么呢?深入研究教參后我體會(huì)很深,明白了新課程數(shù)學(xué)教學(xué)要“瞻前顧后”的道理。

  新課程的改革,更加注重知識(shí)的遷移和聯(lián)系,使得小學(xué)的知識(shí)要體現(xiàn)與初中更加的接軌,五年級(jí)上冊(cè)第四單元“解簡易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法讓方程的解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個(gè)加數(shù)=和-另一個(gè)加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個(gè)因數(shù)=積÷另一個(gè)因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡單的還是復(fù)雜的方程都可以用這些關(guān)系式去解。而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)等式不變,和等式的兩邊同時(shí)乘或除以同一個(gè)數(shù)(0除外),等式不變進(jìn)行解方程的。新教材如果能把天平的規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來也有規(guī)律可循了。于是,我在教學(xué)時(shí)充分地利用天平實(shí)物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。這樣在解簡易方程時(shí)學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個(gè)數(shù)時(shí),只要在方程的兩邊同時(shí)減(或加)同一個(gè)數(shù),未知數(shù)乘(或除)一個(gè)數(shù)時(shí),只要在方程的兩邊同時(shí)除(或乘)同一個(gè)數(shù)即可。一般不會(huì)出現(xiàn)運(yùn)算符號(hào)弄錯(cuò)的現(xiàn)象了。所以雖然復(fù)雜,但是更容易掌握。

簡易方程教學(xué)反思14

  很多時(shí)候,我們大人都喜歡用方程來解題,這固然是因?yàn)榈搅酥袑W(xué)大量學(xué)習(xí)了各種各樣的方程,一元一次,一元二次,二元一次等等,但還有一個(gè)更重要的原因就是方程對(duì)解題思路的解放,列算式解決實(shí)際問題時(shí),解題思路常常迂回曲折,而他從根本上讓學(xué)生脫離了繁瑣的思路分析,而列方程解決實(shí)際問題,解題思路往往直截了當(dāng),降低了思維難度,它讓學(xué)生從一個(gè)簡單的思路——找等量關(guān)系來解題。所以說,這個(gè)單元的知識(shí)如何教好,從而讓學(xué)生學(xué)好是非常重要的。

  一、用字母表示數(shù)要注意對(duì)數(shù)量關(guān)系的理解

  用字母表示數(shù)是學(xué)生學(xué)習(xí)代數(shù)初步知識(shí)的起步。在算術(shù)里,人們只對(duì)一些具體的、個(gè)別的數(shù)量關(guān)系進(jìn)行研究,引入用字母表示數(shù)后,就可以表達(dá)、研究具有更普遍意義的數(shù)量關(guān)系。可以說,學(xué)習(xí)代數(shù)就是從學(xué)習(xí)用字母表示數(shù)開始的。

  對(duì)小學(xué)生來說,從具體事物的個(gè)數(shù)抽象出數(shù)是認(rèn)識(shí)上的一個(gè)飛躍,而由具體的、確定的數(shù)過渡到用字母表示抽象的、可變的數(shù),更是認(rèn)識(shí)上的一個(gè)飛躍。而且,在用字母表示未知數(shù)的基礎(chǔ)上,使學(xué)生解決實(shí)際問題的數(shù)學(xué)工具,從列出算式解發(fā)展到列出方程解,這又是數(shù)學(xué)思想方法認(rèn)識(shí)上的一次飛躍,它將使學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題能力提高到一個(gè)新的水平。而在老師們的教學(xué)實(shí)踐中,由于在進(jìn)行用方程解題時(shí)格式非常重要,因此往往老師們教學(xué)時(shí)都會(huì)特別強(qiáng)調(diào)格式?墒菑膶W(xué)生的后續(xù)學(xué)習(xí)來看,我慢慢發(fā)現(xiàn),其實(shí)在教學(xué)這一部分知識(shí)時(shí),老師要注重學(xué)生對(duì)數(shù)量關(guān)系的理解,也就是說要加強(qiáng)對(duì)學(xué)生的用含字母的式子表示數(shù)量的訓(xùn)練,也就是寫代數(shù)式的訓(xùn)練。因?yàn)檫@是列方程的基礎(chǔ)。所以,在這里教師一定要向?qū)W生強(qiáng)調(diào)并反復(fù)練習(xí)用含有字母的式子表示數(shù)量,讓學(xué)生明白以往學(xué)習(xí)的所有數(shù)量關(guān)系在用含有字母的式子表示數(shù)量中都能用到。如:原來有100元,用掉X元,一樣的要用減法求還剩下多少錢,買了3個(gè)練習(xí)本,每個(gè)A元,一樣的用乘法來求一共要多少錢。讓學(xué)生在這樣的大量的練習(xí)和強(qiáng)化中,知道含有字母的式子的數(shù)量關(guān)系和以前是一樣的,只是現(xiàn)在所用的符號(hào)不一樣,其實(shí),從廣義上來講,字母是一種符號(hào),數(shù)字也是一種符號(hào)。

  二、注重方程的意義的教學(xué)。

  方程是什么,教材中是這樣說的,含有未知數(shù)的等式叫做方程。其實(shí),這只是從方程的表現(xiàn)形式來給方程下定義。也就是說,從表象上來說,如果一個(gè)式子是一個(gè)等式,并且含有未知數(shù),我們就說這個(gè)式子是方程。但是,從數(shù)學(xué)的本質(zhì)上來說,方程的意義是什么呢?我們每個(gè)人都能夠熟練地列方程解決問題,那么,在你列方程解決問題時(shí),你每次抓住的核心是什么呢?是等量關(guān)系。所以,方程最本質(zhì)的教學(xué)意義應(yīng)是同一個(gè)量(或相等的量)用不同的形式去表達(dá)。但很多時(shí)候,老師們?cè)诮虒W(xué)方程的意義時(shí),往往只研究了方程的表面形式,也就是書上所說的:含有未知數(shù)的等式叫方程,所以,老師們一般都是從等式入手,讓學(xué)生在認(rèn)識(shí)等式的基礎(chǔ)上引入未知數(shù),然后告訴學(xué)生,象這樣的含有未知數(shù)的等式叫方程。這樣一節(jié)課教下來,學(xué)生除了會(huì)判斷一個(gè)關(guān)系式是不是方程,還知道了什么呢?這樣的學(xué)習(xí)對(duì)于后面的列方程解決問題真的有幫助嗎?我想,每個(gè)人靜下心來想想,應(yīng)該都會(huì)有答案。

  三、解方程的教學(xué)時(shí)不要被以前的教材編排所影響。

  新教材對(duì)于解方程的安排是變動(dòng)非常大的。以前我們是根據(jù)四則運(yùn)算各部分之間的關(guān)系來解方程。一開始時(shí),還不和學(xué)生說解方程,叫求未知數(shù)X。而現(xiàn)在的教材編排時(shí)是根據(jù)等式的性質(zhì)來解,當(dāng)然,在教材上并沒有歸納出等式的性質(zhì),畢竟,在學(xué)生的小學(xué)階段,只要讓學(xué)生明白,在等式的兩邊同時(shí)加、減、乘和除以同一個(gè)數(shù),等式仍然成立,這并不是完整意義上的等式的性質(zhì)。從學(xué)生的學(xué)習(xí)上來看,我覺得學(xué)生是比較容易接受這種方法的,特別是比較簡單的`方程,學(xué)生只要明白了要把誰抵消,怎么抵消,基本上問題不大。不過,到了稍微復(fù)雜的方程出現(xiàn)了一些問題,這也許是我在教學(xué)這一部分內(nèi)容時(shí),因?yàn)榭偸强紤]到學(xué)生不喜歡列方程(以往的學(xué)生都有這個(gè)問題,可能就是覺得方程的格式繁瑣,好像步驟也不少,學(xué)生總不喜歡),所以,我就想怎么讓學(xué)生少寫點(diǎn)字,所以,在具體的書寫格式和步驟上,和教材稍微有點(diǎn)不同,我沒有象教材那樣寫出怎樣應(yīng)用等式的性質(zhì)的那一步,而是讓學(xué)生直接寫出這一步的結(jié)果,以至于到了后面,有部分學(xué)生就出現(xiàn)了一些問題,特別是象5(X+3)=55這樣的方程,學(xué)生掌握得比較差,也可能是學(xué)生在用含有字母的式子表示數(shù)量時(shí),還是沒有很好地建立這樣的一個(gè)式子是一個(gè)整體,表示一個(gè)數(shù)量這樣的概念,盡管也進(jìn)行了一些強(qiáng)調(diào)。另一個(gè)方面就是具體的步驟可能也對(duì)學(xué)生有影響,所以,我個(gè)人認(rèn)為,可能讓學(xué)生按照書上的步驟來寫盡管麻煩一點(diǎn),但對(duì)于學(xué)生理清思路可能更有幫助。

  總的來說,我覺得簡易方程這個(gè)單元,只要讓學(xué)生有很好地用字母或含有字母的式子表示數(shù)的基礎(chǔ),再加上對(duì)方程的本質(zhì)意義有清晰的理解,知道怎樣解方程,其他的應(yīng)該都不是問題,畢竟,上面的這些都是為列方程解決問題打基礎(chǔ);A(chǔ)打好了,后面的問題就都能能迎刃而解了。

簡易方程教學(xué)反思15

  義務(wù)教育小學(xué)階段五年級(jí)數(shù)學(xué)上冊(cè)第五單元《簡易方程》在解簡易方程呈現(xiàn)五個(gè)例題。

  其中例1以X+3=9為例,討論了X加減某一數(shù)的方程解法。教學(xué)重點(diǎn)是運(yùn)用等式的性質(zhì)1解方程,并引入方程的解與解方程兩個(gè)概念。如圖所示:

  為了便于給出解方程全過程的直觀展示,例題中借助三幅天平演示圖,展現(xiàn)了解方程的完整思考過程,這一點(diǎn)值得稱道,對(duì)于學(xué)生來說,這樣的圖示剖析,有助于學(xué)生自我探究理解,學(xué)習(xí)解簡易方程,從而學(xué)會(huì)解簡易方程的方法。

  但問題來了。在例1當(dāng)中沒有完整的解題過程示范,只有檢驗(yàn)過程的示范。如上圖所示。而完整的示范出現(xiàn)在例3,經(jīng)歷了例1運(yùn)用等式性質(zhì)1解方程,例2利用等式性質(zhì)2解方程,遞進(jìn)至例3完成方程轉(zhuǎn)化解方法(未知數(shù)位于減數(shù)、除數(shù)位置,屬逆向解方程)才有一個(gè)完整的解方程的示范。如下圖所示:

  從學(xué)習(xí)心理學(xué)來講,學(xué)生在接觸新知識(shí)點(diǎn)的第一印象極為重要,第一次學(xué)習(xí)新知,是由不知到知,由不懂到懂而邁出的重要第一步。這一步的踏出對(duì)學(xué)生而言異常重要。第一次是新的,大腦對(duì)新知的接受是處于興奮狀態(tài),此時(shí)的理解記憶刻痕是最深的,無論到的是直,是斜,一旦留下,再想更改那就難上加難。作為老師一定要重視學(xué)生的.第一次接觸新知,“課上損失課外補(bǔ)”更是事倍功半。

  學(xué)材的編排著實(shí)讓我有點(diǎn)撓頭,明明能夠一目了解,通過閱讀自學(xué)就能搞定的解方程規(guī)范,這樣一個(gè)基礎(chǔ)性的知識(shí)點(diǎn),非要放在例3才有完整呈現(xiàn),在實(shí)際的課堂教學(xué)中有點(diǎn)不得勁兒,也有些不符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律。

【簡易方程教學(xué)反思】相關(guān)文章:

簡易方程教學(xué)反思01-02

解簡易方程教學(xué)反思07-27

數(shù)學(xué)簡易方程教學(xué)反思03-10

《解簡易方程》教學(xué)反思09-02

簡易方程教學(xué)反思15篇03-10

簡易方程教學(xué)反思(15篇)03-10

五年級(jí)《簡易方程》教學(xué)反思10-16

方程教學(xué)反思11-22

方程意義教學(xué)反思03-01