- 相關(guān)推薦
時間過得真快,總在不經(jīng)意間流逝,成績已屬于過去,新一輪的工作即將來臨,做好計劃可是讓你提高工作效率的方法喔!我們該怎么擬定計劃呢?以下是小編收集整理的高二數(shù)學(xué)教學(xué)計劃,希望對大家有所幫助。
高二數(shù)學(xué)教學(xué)計劃 篇1
一、指導(dǎo)思想
1、培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力、使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達(dá)推理過程的能力、
2、根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神、
3、使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀、
二、目的要求
1、深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系和網(wǎng)絡(luò)結(jié)構(gòu),細(xì)致領(lǐng)會教材改革的精髓,把握通性通法,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響、
2、因材施教,以學(xué)生為學(xué)習(xí)的主體,構(gòu)建新的認(rèn)知體系,營造有利于學(xué)生學(xué)習(xí)的氛圍、
3、加強課堂教學(xué)研究,科學(xué)設(shè)計教學(xué)方法,扎實有效的提高課堂教學(xué)效果,全面提高數(shù)學(xué)教學(xué)質(zhì)量、
三、具體措施
1、不孤立記憶和認(rèn)識各個知識點,而要將其放到相應(yīng)的體系結(jié)構(gòu)中,在比較、辨析的過程中尋求其內(nèi)在聯(lián)系,達(dá)到理解層次,注意知識塊的復(fù)習(xí),構(gòu)建知識網(wǎng)路、注重基礎(chǔ)知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數(shù)學(xué)語言的表達(dá)形式,推力論證要思路清晰、整體完整、
2、學(xué)會分析,首先是閱讀理解,側(cè)重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側(cè)重于經(jīng)驗及教訓(xùn)的總結(jié),重視常見題型及通法通解、
3、以“錯”糾錯,查缺補漏,反思錯誤,嚴(yán)格訓(xùn)練,規(guī)范解題,養(yǎng)成:想明白,寫清楚,算準(zhǔn)確的習(xí)慣,注意思路的清晰性、思維的嚴(yán)謹(jǐn)性、敘述的條理性、結(jié)果的準(zhǔn)確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數(shù)學(xué)思想和數(shù)學(xué)方法的應(yīng)用、
4、協(xié)調(diào)好講、練、評、輔之間的關(guān)系,追求數(shù)學(xué)復(fù)習(xí)的最佳效果,注重實效,努力提高復(fù)習(xí)教學(xué)的效率和效益;精心設(shè)計教學(xué),做到精講精練,不加重學(xué)生的負(fù)擔(dān),避免“題海戰(zhàn)” ,精心準(zhǔn)備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關(guān)鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學(xué)生的錯誤調(diào)整復(fù)習(xí)策略,使復(fù)習(xí)更加有重點、針對性,加快教學(xué)節(jié)奏,提高教學(xué)效率、
5、周密計劃合理安排,現(xiàn)數(shù)學(xué)學(xué)科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學(xué),使學(xué)生在解題探究中提高能力、
6、多從“貼近教材、貼近學(xué)生、貼近實際”角度,選擇典型的數(shù)學(xué)聯(lián)系生活、生產(chǎn)、環(huán)境和科技方面的問題,對學(xué)生進行有計劃、針對性強的訓(xùn)練,多給學(xué)生鍛煉各種能力的`機會,從而達(dá)到提升學(xué)生數(shù)學(xué)綜合能力之目的、不脫離基礎(chǔ)知識來講學(xué)生的能力,基礎(chǔ)扎實的學(xué)生不一定能力 強、教學(xué)中,不斷地將基礎(chǔ)知識運用于數(shù)學(xué)問題的解決中,努力提高學(xué)生的學(xué)科綜合能力、
高二數(shù)學(xué)學(xué)習(xí)方法
(1)制定計劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計劃是推動我們主動學(xué)習(xí)和克服困難的內(nèi)在動力。計劃先由老師指導(dǎo)督促,再一定要由自己切實完成,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。
。2)課前預(yù)習(xí)是取得較好學(xué)習(xí)效果的基礎(chǔ)。課前預(yù)習(xí)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動權(quán)。預(yù)習(xí)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(3)上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。上課專心聽重點難點,把老師補充的內(nèi)容記錄下來,而不是全抄全錄,顧此失彼。
(4)及時復(fù)習(xí)是提高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對所學(xué)的新知識由“懂”到“會”。
(5)獨立作業(yè)是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學(xué)新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學(xué)知識由“會”到“熟”。
(6)解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考。實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿來復(fù)習(xí)強化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由“熟”到“活”。
。7)系統(tǒng)小結(jié)是通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達(dá)到對所學(xué)知識融會貫通的目的。經(jīng)常進行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。
。8)課外學(xué)習(xí)包括閱讀課外書籍與報刊,課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。
高二數(shù)學(xué)教學(xué)計劃 篇2
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標(biāo)如下:獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。立足我校學(xué)生實際,在思想上增強學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,在知識上側(cè)重雙基訓(xùn)練,加強對學(xué)生創(chuàng)新思維、知識遷移、歸納拓展、綜合運用等能力的培養(yǎng),全面提高學(xué)生的數(shù)學(xué)素養(yǎng)。
二、學(xué)生基本情況分析
由于高二進行文理分班,所教的文科實驗班。學(xué)生的數(shù)學(xué)學(xué)習(xí)情況較好,學(xué)生較自覺,但是,學(xué)生對自己學(xué)習(xí)數(shù)學(xué)的`信心不足,積極性和主動性需加強,在做題時的靈活性還不夠,要加強舉一反三的能力。
三、教學(xué)目標(biāo)
針對以上問題的出現(xiàn),在本學(xué)期擬訂以下目標(biāo)和措施。其具體目標(biāo)如下:獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。提高數(shù)學(xué)的提出、分析和解決問題的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
四、教法分析
選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,以達(dá)到培養(yǎng)其興趣的目的。通過觀察思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
五、教學(xué)措施:
1.抓好課堂教學(xué),提高教學(xué)效益。課堂教學(xué)是教學(xué)的主要環(huán)節(jié),因此,抓好課堂教學(xué)是教學(xué)之根本,是提高數(shù)學(xué)成績的主要途徑。
、僭鷮嵚鋵嵓w備課,通過集體討論,抓住教學(xué)內(nèi)容的實質(zhì),形成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題。
、诩哟笳n堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。最有效的學(xué)習(xí)是自主學(xué)習(xí),因此,課堂教學(xué)要大力培養(yǎng)學(xué)生自主探究的精神,通過知識的產(chǎn)生,發(fā)展,逐步形成知識體系;通過知識質(zhì)疑、展活遷移知識、應(yīng)用知識,提高能力。同時要養(yǎng)成學(xué)生良好的學(xué)習(xí)習(xí)慣,不斷提高學(xué)生的數(shù)學(xué)素養(yǎng),從而提高數(shù)學(xué)素養(yǎng),并大面積提高數(shù)學(xué)成績。
2.加強課外輔導(dǎo),提高競爭能力。課外輔導(dǎo)是課堂的有力補充,是提高數(shù)學(xué)成績的有力手段。①加強數(shù)學(xué)數(shù)學(xué)競賽的指導(dǎo),提高學(xué)習(xí)興趣。
②加強學(xué)習(xí)方法的指導(dǎo),全方面提高他們的數(shù)學(xué)能力,特別是自主能力,并通過強化訓(xùn)練,不斷提高解題能力,使他們的數(shù)學(xué)成績更上一層樓。
、奂訌妼吘壣妮o導(dǎo)。邊緣生是一個班級教學(xué)成敗的關(guān)鍵,因此,我將下大力氣輔導(dǎo)邊緣生,通過個別或集體的方法,并定時單獨測試,面批面改,從而使他們的數(shù)學(xué)成績有質(zhì)的飛躍。
高二數(shù)學(xué)教學(xué)計劃 篇3
(1)知識目標(biāo):
1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.
(2)能力目標(biāo):
1.進一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;
2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強學(xué)生用數(shù)學(xué)的意識.
(3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點.難點
(1)教學(xué)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.
3.教學(xué)過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
[引導(dǎo)] 畫圖建系
[學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點,半圓的直徑AB所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。
(二)深入探究(獲得新知)
問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學(xué)生活動] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)M(x,y)是圓上任意一點,根據(jù)定義點M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}
由兩點間的距離公式,點M適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
I.直接應(yīng)用(內(nèi)化新知)
問題三:1.寫出下列各圓的方程(課本P77練習(xí)1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過點 ,圓心在點 .
2.根據(jù)圓的方程寫出圓心和半徑
(1) ; (2) .
II.靈活應(yīng)用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學(xué)生活動]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .
III.實際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實際問題情境]
(四)反饋訓(xùn)練(形成方法)
問題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點A(-4,-5),B(6,-1),求以AB為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
(五)小結(jié)反思(拓展引申)
1.課堂小結(jié):
(1)圓心為C(a,b),半徑為r 的.圓的標(biāo)準(zhǔn)方程為:
當(dāng)圓心在原點時,圓的標(biāo)準(zhǔn)方程為:
(2) 求圓的方程的方法:①找出圓心和半徑;②待定系數(shù)法
(3) 已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是:
(4) 求解應(yīng)用問題的一般方法
2.分層作業(yè):(A)鞏固型作業(yè):課本P81-82:(習(xí)題7.6)1.2.4
(B)思維拓展型作業(yè):
試推導(dǎo)過圓 上一點 的切線方程.
3.激發(fā)新疑:
問題七:1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2.方程: 的曲線是什么圖形?
教學(xué)設(shè)計說明
圓是學(xué)生比較熟悉的曲線,初中平面幾何對圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點確定為用解析法研究圓的標(biāo)準(zhǔn)方程及其簡單應(yīng)用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實際問題引導(dǎo)學(xué)生探究獲得圓的標(biāo)準(zhǔn)方程,然后,利用圓的標(biāo)準(zhǔn)方程由淺入深的解決問題,并通過圓的方程在實際問題中的應(yīng)用,增強學(xué)生用數(shù)學(xué)的意識。另外,為了培養(yǎng)學(xué)生的理性思維,我分別在引例和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,能力與知識的形成相伴而行,這樣的設(shè)計不但突出了重點,更使難點的突破水到渠成.
本節(jié)課的設(shè)計了五個環(huán)節(jié),以問題為紐帶,以探究活動為載體,使學(xué)生在問題的指引下、教師的指導(dǎo)下把探究活動層層展開、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想。應(yīng)用啟發(fā)式的教學(xué)方法把學(xué)生學(xué)習(xí)知識的過程轉(zhuǎn)變?yōu)閷W(xué)生觀察問題、發(fā)現(xiàn)問題、分析問題、解決問題的過程,在解決問題的同時鍛煉了思維.提高了能力。
高二數(shù)學(xué)教學(xué)計劃 篇4
這學(xué)期對于我來說,是一個挑戰(zhàn),因為本學(xué)期我接手了兩個理科班。以前我?guī)У氖冀K是文科班,對于文科班的學(xué)生的情況比較理解,但對于理科班來說,我不知道他們對學(xué)習(xí)會有怎樣的想法與做法。高二七班與八班在人數(shù)上基本一致,但通過我的了解,兩班還是有一定的差距:七班學(xué)生活潑且聰明的學(xué)生也大有人在,但是不學(xué)習(xí)的比較多,甚至有些學(xué)生已經(jīng)徹底放棄了;八班的學(xué)生比較老實些,每個人都在認(rèn)真學(xué),但是數(shù)學(xué)成績沒有七班那么突出,而且學(xué)生在課堂上表現(xiàn)的也不是很積極。針對這兩個陌生的理科班,本學(xué)習(xí)我制定了如下的教學(xué)計劃:
一、指導(dǎo)思想
在學(xué)校、數(shù)學(xué)組的領(lǐng)導(dǎo)下,嚴(yán)格執(zhí)行學(xué)校的各項教育教學(xué)制度和要求,認(rèn)真完成各項任務(wù),嚴(yán)格執(zhí)行“三規(guī)”、“五嚴(yán)”。利用有限的時間,使學(xué)生在獲得所必須的基本數(shù)學(xué)知識和技能的同時,在數(shù)學(xué)能力方面能有所提高,為20xx年的高考做準(zhǔn)備,為學(xué)生今后的發(fā)展打下堅實的數(shù)學(xué)基礎(chǔ)。
二、教學(xué)措施
1、以能力為中心,以基礎(chǔ)為依托,調(diào)整學(xué)生的學(xué)習(xí)習(xí)慣,調(diào)動學(xué)生學(xué)習(xí)的積極性,讓學(xué)生多動手、多動腦,培養(yǎng)學(xué)生的運算能力、邏輯思維能力、運用數(shù)學(xué)思想方法分析問題解決問題的能力。精講多練,一般地,每一節(jié)課讓學(xué)生練習(xí)20分鐘左右,充分發(fā)揮學(xué)生的主體作用。
2、堅持每一個教學(xué)內(nèi)容集體研究,充分發(fā)揮備課組集體的力量,精心備好每一節(jié)課,努力提高上課效率。調(diào)整教學(xué)方法,采用新的教學(xué)模式。教學(xué)基本模式為:
基礎(chǔ)練習(xí)→典型例題→作業(yè)→課后檢查
。1)基礎(chǔ)練習(xí):一般5道題,主要復(fù)習(xí)基礎(chǔ)知識,基本方法。要求所有的學(xué)生都過關(guān),所有的學(xué)生都能做完。
(2)典型例題:一般4道題,例1為基礎(chǔ)題,要直接運用課前練習(xí)的基礎(chǔ)知識、基本方法,由學(xué)生上臺演練。例2思路要廣,讓有生能想到多種方法,讓中等生能想到1—2種方法,讓中下生讓能想到1種方法。例3題目要新,能轉(zhuǎn)化為前面的典型類型求解。例4為綜合題,培養(yǎng)學(xué)生運用數(shù)學(xué)思想方法分析問題解決問題的能力。
。3)作業(yè):本節(jié)課的基礎(chǔ)問題,典型問題及下一節(jié)課的預(yù)習(xí)題。
(4)課后檢查;重點檢查改錯本及復(fù)習(xí)資料上的作業(yè)。
3、腳踏實地做好落實工作。當(dāng)日內(nèi)容,當(dāng)日消化,加強每天、每月過關(guān)練習(xí)的檢查與落實。堅持每周一周練,每章一章考。通過周練重點突破一些重點、難點,章考試一章的查漏補缺,章考后對一章的不足之處進行重點講評。
4、周練與章考,切實把握試題的選取,切實把握高考的脈搏,注重基礎(chǔ)知識的考查,注重能力的考查,注意思維的層次性(即解法的多樣性),適時推出一些新題,加強應(yīng)用題考察的力度。每一次考試試題堅持集體研究,努力提高考試的效率。
5.注重對所選例題和練習(xí)題的把握:
。1)注重對“四基五能力”的考察把握,貼近課本;
(2)注重學(xué)科內(nèi)容的聯(lián)系與綜合;
。3)注重數(shù)學(xué)思想方法、通性、通法,淡化特殊技巧;
。4)注重能力立意,以考察學(xué)生邏輯思維能力為核心,全面考察能力;
。5)注重考查學(xué)生的`創(chuàng)新意識和實踐能力,設(shè)計應(yīng)用性、探索性的問題;
(6)試題體現(xiàn)層次性、基礎(chǔ)性,梯度安排合理,堅持多角度,多層次的考察,有效地檢測對數(shù)學(xué)知識中所蘊含的數(shù)學(xué)思想和方法掌握的程度。
。7)精心選做基礎(chǔ)訓(xùn)練題目,做到不偏、不漏、不怪,即不偏離教材內(nèi)容和考試說明的范圍和要求。不選做那些有孤僻怪誕特點、內(nèi)容和思路的題目,做到不憑個人喜好選題,不脫離學(xué)生學(xué)習(xí)狀況選題,不超越教學(xué)基本內(nèi)容選題,不大量選做難度較大的題目。
6.周密計劃合理安排,現(xiàn)數(shù)學(xué)學(xué)科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學(xué),使學(xué)生在解題探究中提高能力。
7.多從“貼近教材、貼近學(xué)生、貼近實際”角度,選擇典型的數(shù)學(xué)聯(lián)系生活、生產(chǎn)、環(huán)境和科技方面的問題,對學(xué)生進行有計劃、針對性強的訓(xùn)練,多給學(xué)生鍛煉各種能力的機會,從而達(dá)到提升學(xué)生數(shù)學(xué)綜合能力之目的。不脫離基礎(chǔ)知識來講學(xué)生的能力,基礎(chǔ)扎實的學(xué)生不一定能力強。教學(xué)中不斷地將基礎(chǔ)知識運用于數(shù)學(xué)問題的解決中,努力提高學(xué)生的學(xué)科綜合能力。
三、對自己的要求——落實教學(xué)的各個環(huán)節(jié)
1.精心上好每一節(jié)課
備課時從實際出發(fā),精心設(shè)計每一節(jié)課,備課組分工合作,利用集體智慧制作課件,充分應(yīng)用現(xiàn)代化教育手段為教學(xué)服務(wù),提高四十五分鐘課堂效率。
2.嚴(yán)格控制測驗,精心制作每一份復(fù)習(xí)資料和練習(xí)
教學(xué)中配備資料應(yīng)要求學(xué)生按教學(xué)進度完成相應(yīng)的習(xí)題,老師要給予檢查和必要的講評,老師要提前向?qū)W生指出不做的題,以免影響學(xué)生的學(xué)習(xí)。三類練習(xí)(大練習(xí)、限時訓(xùn)練、月考)試題的制作分工落實到每個人(備課組長出月考卷,其他教師出大練習(xí)、限時訓(xùn)練卷),并經(jīng)組長嚴(yán)格把關(guān)方可使用。注重考試質(zhì)量和試卷分析,定期組織備課組教師進行學(xué)情分析,發(fā)現(xiàn)問題,尋找對策,及時解決,確保學(xué)生的學(xué)習(xí)積極性不斷提高。
3.做好作業(yè)批改和加強輔導(dǎo)工作
我們的工作對象是活生生的對象──學(xué)生,這里需要關(guān)心、幫助及鼓勵。我們要對學(xué)生的學(xué)習(xí)情況做大量的細(xì)致工作,批改作業(yè)、輔導(dǎo)疑難、及時鼓勵等,特別是對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教我們的輔導(dǎo)更為重要。在教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進行輔導(dǎo)工作,不僅要給他們解疑難,還要給他們鼓信心、調(diào)動自身的學(xué)習(xí)積極性,幫助他們樹立良好的學(xué)習(xí)態(tài)度,積極主動地去投入學(xué)習(xí),變“要我學(xué)”為“我要學(xué)”。
高二數(shù)學(xué)教學(xué)計劃 篇5
一、有計劃的安排一學(xué)期的教學(xué)工作計劃:
新學(xué)期開課的第一天,備課組進行了第一次活動。該次活動的主題是制定本學(xué)期的教學(xué)工作計劃及討論如何響應(yīng)學(xué)校的號召,開展主體式教學(xué)模式
的教學(xué)改革活動。
一個完整完善的工作計劃,能保證教學(xué)工作的順利開展和完滿完成,所以一定要加以十二分的重視,并要努力做到保質(zhì)保量完成。
在以后的教學(xué)過程中,堅持每周一次的關(guān)于教學(xué)工作情況總結(jié)的備課組活動,發(fā)現(xiàn)情況,及時討論及時解決。
二、定時進行備課組活動,解決有關(guān)問題
備課組將進行每周一次的活動,內(nèi)容包括有關(guān)教學(xué)進度的安排、疑難問題的分析討論研究,數(shù)學(xué)教學(xué)的動態(tài)、數(shù)學(xué)教學(xué)的`改革與創(chuàng)新等。一般每次
備課組活動都有專人主要負(fù)責(zé)發(fā)言,時間為二節(jié)課。經(jīng)過精心的準(zhǔn)備,每次的備課組活動都將能解決一到幾個相關(guān)的問題,各備課組成員的教學(xué)研
究水平也會在不知不覺中得到提高。
三、積極抓好日常的教學(xué)工作程序,確保教學(xué)工作的有效開展
按照學(xué)校的要求,積極認(rèn)真地做好課前的備課資料的搜集工作,然后集體備課,制作成教學(xué)課件后共享,全備課組共用。一般要求每人輪流制作,
一人一節(jié),上課前兩至三天完成。每位教師的電教課比例都要在90%以上。每周至少兩次的學(xué)生作業(yè),要求全批全改,發(fā)現(xiàn)問題及時解決,及時在
班上 評講,及時反饋;每章至少一份的課外練習(xí)題,要求要有一定的知識覆蓋面,有一定的難度和深度,每章由專人負(fù)責(zé)出題;每章一次的測驗
題,也由專人負(fù)責(zé)出題,并要達(dá)到一定的預(yù)期效果。
四、積極參加教學(xué)改革工作,使學(xué)校的教研水平向更高處推進
本學(xué)期學(xué)校全面推行主體式的教學(xué)模式,要使學(xué)生參與到教學(xué)的過程中來,更好地提高他們學(xué)習(xí)的興趣和學(xué)習(xí)的積極性,使他們更自主地學(xué)習(xí),學(xué)
會學(xué)習(xí)的方法。積極響應(yīng)學(xué)校教學(xué)改革的要求,充分利用網(wǎng)上資源,使用分組討論式教學(xué),充分體現(xiàn)以學(xué)生為主體的教學(xué)模式,不斷提高自身的教
學(xué)水平。
高二數(shù)學(xué)教學(xué)計劃 篇6
一、教材分析。
1、教材地位、作用。
本節(jié)課的內(nèi)容選自《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修3(A)版》第三章中的第3.2.1節(jié)古典概型。它安排在隨機事件的概率之后,幾何概型之前,學(xué)生還未學(xué)習(xí)排列組合的情況下教學(xué)的。
古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位,是學(xué)習(xí)概率必不可少的內(nèi)容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節(jié)課的教學(xué)重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、學(xué)情分析。
學(xué)生基礎(chǔ)一般,但師生之間,學(xué)生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細(xì)節(jié)上不完備,反映在解題中就是思維不慎密,過程不完整。
二、教學(xué)目標(biāo)。
1、知識與技能目標(biāo)。
。1)理解等可能事件的概念及概率計算公式。
。2)能夠準(zhǔn)確計算等可能事件的概率。
2、過程與方法。
根據(jù)本節(jié)課的知識特點和學(xué)生的認(rèn)知水平,教學(xué)中采用探究式和啟發(fā)式教學(xué)法,通過生活中常見的實際問題引入課題,層層設(shè)問,經(jīng)過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學(xué)生對問題的理解從感性認(rèn)識上升到理性認(rèn)識。
3、情感態(tài)度與價值觀。
概率問題與實際生活聯(lián)系緊密,學(xué)生通過概率知識的學(xué)習(xí),可以更好的理解隨機現(xiàn)象的本質(zhì),掌握隨機現(xiàn)象的規(guī)律,科學(xué)地分析、解釋生活中的一些現(xiàn)象,初步形成實事求是的科學(xué)態(tài)度和鍥而不舍的求學(xué)精神。
三、重點、難點。
1、重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。
2、難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
四、教學(xué)過程。
1、創(chuàng)設(shè)情境,提出問題。
師:在考試中遇到不會做的選擇題同學(xué)們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?
通過這個同學(xué)們經(jīng)常會遇到的問題,引導(dǎo)學(xué)生合作探索新知識,符合“學(xué)生為主體,老師為主導(dǎo)”的現(xiàn)代教育觀點,也符合學(xué)生的認(rèn)知規(guī)律。隨著新問題的提出,激發(fā)了學(xué)生的求知欲望,使課堂的有效思維增加。
2、抽象思維。形成概念、
師:考察試驗一“拋擲一枚質(zhì)地均勻的骰子”,有幾種不同的結(jié)果,結(jié)果分別有哪些?
生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。
師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結(jié)果。
師:考察試驗二“拋擲一枚質(zhì)地均勻的硬幣”有哪些基本事件?
生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。
師:那基本事件有什么特點呢?
問題:
。1)在“拋擲一枚質(zhì)地均勻的骰子”試驗中,會同時出現(xiàn)“1點”和“2點”這兩個基本事件嗎?
。2)事件“出現(xiàn)偶數(shù)點”包含了哪幾個基本事件?
由如上問題,分別得到基本事件如下的兩個特點:
。1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的.和。
(讓學(xué)生交流討論,教師再加以總結(jié)、概括)
讓學(xué)生歸納與總結(jié),鼓勵學(xué)生用自己的語言表述,從而提高學(xué)生的表達(dá)能力與數(shù)學(xué)語言的組織能力
例1:從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?
師:為了得到基本事件,我們可以按照某種順序,把所有可能的結(jié)果寫出來,本小題我們可以按照字母排序的順序,用列舉法列出所有基本事件的結(jié)果。
解:所求的基本事件共有6個:
____________________________________________________________________________________。
由于學(xué)生沒有學(xué)習(xí)排列組合知識,因此用列舉法列舉基本事件的個數(shù),不僅能讓學(xué)生直觀的感受到對象的總數(shù),而且還能使學(xué)生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數(shù)這一難點,同時滲透了數(shù)形結(jié)合及分類討論的數(shù)學(xué)思想。
師:你能發(fā)現(xiàn)前面兩個數(shù)學(xué)試驗和例1有哪些共同特點嗎?(先讓學(xué)生交流討論,然后教師抽學(xué)生回答,并在學(xué)生回答的基礎(chǔ)上再進行補充)
試驗一中所有可能出現(xiàn)的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現(xiàn)的可能性相等,都是;
試驗二中所有可能出現(xiàn)的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現(xiàn)的可能性相等,都是;
例1中所有可能出現(xiàn)的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現(xiàn)的可能性相等,都是;
經(jīng)概括總結(jié)后得到:
、僭囼炛兴锌赡艹霈F(xiàn)的基本事件只有有限個;
、诿總基本事件出現(xiàn)的可能性相等。
我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。
學(xué)生在合作交流的探究氛圍中思考、質(zhì)疑、傾聽、表述,體驗到成功的喜悅,學(xué)會學(xué)習(xí)、學(xué)會合作,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時,訓(xùn)練了學(xué)生觀察和概括歸納問題的能力。
3、概念深化,加深理解。
試驗“向一個圓面內(nèi)隨機地投射一個點,如果該點落在圓內(nèi)任意一點都是等可能的”。你認(rèn)為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結(jié)果是圓面內(nèi)所有的點,試驗的所有可能結(jié)果數(shù)是無限的,雖然每一個試驗結(jié)果出現(xiàn)的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。
試驗“某同學(xué)隨機地向一靶心進行射擊,這一試驗的結(jié)果只有有限個:命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán)’。你認(rèn)為這是古典概型嗎?為什么?
生:不是古典概型,因為試驗的所有可能結(jié)果只有7個,而命中10環(huán)、命中9環(huán)……命中5環(huán)和不中環(huán)的出現(xiàn)不是等可能的,即不滿足古典概型的第二個條件。
這兩個問題的設(shè)計是為了讓學(xué)生更加準(zhǔn)確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學(xué)難點,培養(yǎng)學(xué)生思維的深刻性與批判性。
4、觀察比較,推導(dǎo)公式。
師:在古典概型下,隨機事件出現(xiàn)的概率如何計算?(讓學(xué)生討論、思考交流)
生:試驗二中,出現(xiàn)各個點的概率相等,即
P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)
由概率的加法公式,得
P(“1點”)+P(“2點”)+P(“3點”)+P(“4點”)+P(“5點”)+P(“6點”)=P(必然事件)=1
因此P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)=
進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,
P(“出現(xiàn)偶數(shù)點”)=P(“2點”)+P(“4點”)+P(“6點”)=++==
P(“出現(xiàn)偶數(shù)點”)=?=
師:根據(jù)上述試驗,你能概括總結(jié)出,古典概型計算任何事件的概率計算公式嗎?
生:_________________________________________________________________。
學(xué)生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數(shù)學(xué)知識形成的發(fā)生與發(fā)展的過程,體現(xiàn)具體到抽象、從特殊到一般的數(shù)學(xué)思想,同時讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的合理性。
師:我們在使用古典概型的概率公式時,應(yīng)該還要注意些什么呢?(先讓學(xué)生自由說,教師再加以歸納)在使用古典概型的概率公式時,應(yīng)該注意:
、僖袛嘣摳怕誓P褪遣皇枪诺涓判;
、谝页鲭S機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
5、應(yīng)用與提高。
例2:單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考查的內(nèi)容,他可以選擇惟一正確的答案。假設(shè)考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
解:這是一個古典概型,因為試驗的可能結(jié)果只有4個:選擇A、選擇B、選擇C、選擇D,從而由古典概型的概率計算公式得:
探究:在標(biāo)準(zhǔn)化考試中既有單選題又有不定項選擇題,不定項選擇題是從A,B,C,D四個選項中選出所有正確的答案,同學(xué)們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?
解:這是一個古典概型,因為試驗的可能結(jié)果只有15個:選擇A、選擇B、選擇C、選擇D,選擇AB、選擇AC、選擇AD、選擇BC、選擇BD、選擇CD、選擇ABC、選擇ABD、選擇ACD、選擇BCD、選擇ABCD,從而由古典概型的概率計算公式得:
P(“答對”)=1/15
解決了課前提出的思考題,讓學(xué)生明確解決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。
例3:同時擲兩個骰子,計算:
。1)一共有多少種不同的結(jié)果?
。2)其中向上的點數(shù)之和是5的結(jié)果有多少種?
。3)向上的點數(shù)之和是5的概率是多少?
。ń處熛茸寣W(xué)生獨立完成,再抽兩位不同答案的學(xué)生回答)
學(xué)生1:
、偎锌赡艿慕Y(jié)果是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種。
②向上的點數(shù)之和為5的結(jié)果有2個,它們是(1,4)(2,3)。
、巯蛏宵c數(shù)之和為5的結(jié)果(記為事件A)有2種,因此,由古典概型的概率計算公式可得
學(xué)生2:
①擲一個骰子的結(jié)果有6種,我們把兩個骰子標(biāo)上記號1,2以便區(qū)分,由于1號骰子的每一個結(jié)果都可與2號骰子的任意一個結(jié)果配對,組成同時擲兩個骰子的一個結(jié)果,我們可以用列表法得到(如圖),其中第一個數(shù)表示1號骰子的結(jié)果,第二個數(shù)表示2號骰子的結(jié)果。
由表中可知同時擲兩個骰子的結(jié)果共有36種。
②在上面的所有結(jié)果中,向上的點數(shù)之和為5的結(jié)果有4種:(1,4),(2,3),(3,2),(4,1)。
、塾捎谒36種結(jié)果是等可能的,其中向上點數(shù)之和為5的結(jié)果(記為事件A)有4種,因此,由古典概型的概率計算公式可得
師:上面同一個問題為什么會有兩種不同的答案呢?(先讓學(xué)生交流討論,教師再抽學(xué)生回答)
生:答案1是錯的,原因是其中構(gòu)造的21個基本事件不是等可能發(fā)生的,因此就不能用古典概型的概率公式求解。
師:我們今后用古典概型的概率公式求解時,特別要驗證“每個基本事件出現(xiàn)是等可能的”這個條件,否則計算出的概率將是錯誤的。
本題通過學(xué)生的觀察比較,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點,體現(xiàn)了學(xué)生的主體地位,逐漸使學(xué)生養(yǎng)成自主探究能力。同時培養(yǎng)學(xué)生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學(xué)生數(shù)學(xué)思維情趣。
6、知識梳理,課堂小結(jié)。
。1)本節(jié)課你學(xué)習(xí)到了哪些知識?
。2)本節(jié)課滲透了哪些數(shù)學(xué)思想方法?
7、作業(yè)布置。
(1)閱讀本節(jié)教材內(nèi)容
。2)必做題課本130頁練習(xí)第1,2題,課本134頁習(xí)題3。2A組第4題
。3)選做題課本134頁習(xí)題B組第1題
8、教學(xué)反思。
本節(jié)課的教學(xué)設(shè)計以“問題串”的方式呈現(xiàn)為主,教學(xué)過程中師生共同合作,體驗古典概型的特點,公式的生成、發(fā)現(xiàn),把“數(shù)學(xué)發(fā)現(xiàn)”的權(quán)力還給學(xué)生,讓學(xué)生感受知識形成的過程,獲得數(shù)學(xué)發(fā)現(xiàn)的體驗。將學(xué)習(xí)的主動權(quán)較完整地交還給學(xué)生。
本節(jié)課始終本著在教師的引導(dǎo)下,學(xué)生通過討論、歸納、探究等方式自主獲取知識,從而達(dá)到滿意的教學(xué)效果。構(gòu)建利于學(xué)生學(xué)習(xí)的有效教學(xué)情境,較好地拓展師生的活動空間,符合新課程的理念。
高二數(shù)學(xué)教學(xué)計劃 篇7
數(shù)學(xué),作為人類思維的表達(dá)形式,反映了人們積極進取的意志、縝密周詳?shù)倪壿嬐评砑皩ν昝谰辰绲淖非。小編?zhǔn)備了高二第一學(xué)期數(shù)學(xué)文科教學(xué)計劃,具體請看以下內(nèi)容。
一、指導(dǎo)思想:
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的'能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
二、教學(xué)目標(biāo):
(一)情意目標(biāo):
(1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
(2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
(3)在探究中體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作的學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識。
(二)能力要求:
(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(2)通過揭示所學(xué)內(nèi)容中的有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
(3)通過教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。
三、教學(xué)內(nèi)容
本學(xué)期教學(xué)內(nèi)容有立體幾何、解析幾何、邏輯知識和圓錐曲線、二元一次不等式(組)與簡單的線性規(guī)劃。
立體幾何是研究的是物體的形狀、大小與位置關(guān)系。通過直觀感知、操作確認(rèn)、思辨論證、等方法認(rèn)識和探索幾何圖形及其性質(zhì)。通過學(xué)習(xí),培養(yǎng)和發(fā)展學(xué)生的空間想象能力、推理論證能力、運用圖形語言進行交流的能力以及幾何直觀能力。
直線和圓是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學(xué)思想。在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其相互位置關(guān)系,并了解空間直角坐標(biāo)系,體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
二元一次不等式(組)與簡單的線性規(guī)劃問題是不等式的重要應(yīng)用,也是數(shù)學(xué)實際應(yīng)用的重要形式之一。本節(jié)要求學(xué)生能識別不等式(組)表示的區(qū)域,并能根據(jù)區(qū)域正確地用不等式(組)來表示,能解決簡單的實際問題。
常用邏輯包括命題及其關(guān)系、充要條件、簡單的邏輯聯(lián)結(jié)詞和全稱量詞與存在量詞
通過學(xué)習(xí)使學(xué)生理解命題的概念,了解若,則形式的命題及其逆命題、否命題與逆否命題,會分析四種命題的相互關(guān)系;理解必要條件、充分條件與充要條件的含義;了解邏輯聯(lián)結(jié)詞或、且、非的含義;理解全稱量詞和存在量詞的意義、能正確地對含一個量詞的命題進行否定。
圓錐曲線研究的對象是橢圓、雙曲線、拋物線,使用的方法也是代數(shù)方法。這一部分的題目的綜合性比較強,它要求學(xué)生既能分析圖形,又能靈活地進行各種代數(shù)式的變形,這對學(xué)生能力的要求較高。坐標(biāo)方法是要求學(xué)生掌握的。但是,對學(xué)生的要求不能過高,只能以絕大多數(shù)學(xué)生所能達(dá)到的程度為標(biāo)準(zhǔn)。
高二數(shù)學(xué)教學(xué)計劃 篇8
高二數(shù)學(xué)教學(xué)計劃 篇9
1。解析幾何是利用代數(shù)方法來研究幾何圖形性質(zhì)的一門學(xué)科,它包括平面解析幾何和空間解析幾何兩部分。它的主要研究對象是直線和平面、二次曲線和二次曲面。在大學(xué)階段,“解析幾何”是以圓錐曲線和圓錐曲面為研究對象的一門學(xué)科,研究三元二次方程表示的曲線和曲面,如空間直線、平面、柱面、錐面、旋轉(zhuǎn)曲面和二次曲面的方程等,研究的內(nèi)容比較固定,研究方法比較成熟。高中階段主要研究二元二次方程所表示的曲線,比如圓、橢圓、雙曲線、拋物線等。
2。“解析幾何思想”代表了研究曲線和曲面的一般方法和手段,即用代數(shù)為工具解決幾何問題。用解析幾何的思想方法來研究幾何問題,思維工程可以表現(xiàn)為以下步驟:第一,用代數(shù)的語言來描述幾何圖形,例如“點”可以用“數(shù)對”表示,“曲線”可以用“方程”表示等;第二,把幾何問題轉(zhuǎn)化為代數(shù)問題,例如,“兩直線平行”可以轉(zhuǎn)化為“兩直線方程組成的方程組無解”等;第三,實施代數(shù)運算,求解代數(shù)問題;第四,將代數(shù)解轉(zhuǎn)化為幾何結(jié)論。隨著數(shù)學(xué)本身的發(fā)展,出現(xiàn)了代數(shù)數(shù)論、代數(shù)幾何等的數(shù)學(xué)分支,而拓?fù)鋵W(xué)、泛函等代數(shù)工具都可以作為研究心得曲線和曲面的工具,這些都是“解析幾何思想”的發(fā)展個推廣。解析幾何初步的重點是幫助學(xué)生理解解析幾何的基本思想,即把代數(shù)作為一種工具和手段來研究幾何問題。
3!白鴺(biāo)系”是解析幾何思想的主要組成部分,因為建立了坐標(biāo)系,就能把曲線和曲面的性質(zhì)用代數(shù)來表示,從而把幾何問題轉(zhuǎn)化為代數(shù)問題來解決。適當(dāng)?shù)剡x擇坐標(biāo)系可以大大簡化對圖形性質(zhì)的研究,但圖形的性質(zhì)不會豎著坐標(biāo)系的'變化而改變。我們要研究的正是那些和坐標(biāo)系的選擇無關(guān)的性質(zhì);或者說建立坐標(biāo)系正是為了擺脫圖形對坐標(biāo)系的依賴,這在對數(shù)上就表現(xiàn)為某個線性變換群下的不變量和不變關(guān)系。
4。圓錐曲線是我們生活中最基本的圖形。①圓錐曲線(面)可以幫助我們刻畫一些基本的運動。例如,太陽系中,八大行星的運動軌跡都是橢圓。②光學(xué)性質(zhì)和圓錐曲線是密不可分的,基本的光學(xué)性質(zhì)都是由圓錐曲線體現(xiàn)出來的。例如,探照燈就是利用拋物面的光學(xué)性質(zhì)制作而成的,它可以將點光源發(fā)出的光折射成平行光,照射到足夠遠(yuǎn)的地方。幾乎所有的光學(xué)儀器都是依照圓錐曲線(面)的性質(zhì)制成的。③研究圓錐曲線(面)的性質(zhì)時體現(xiàn)解析幾何本質(zhì)的最好載體,即便是在大學(xué)數(shù)學(xué)系的學(xué)習(xí)中,如何利用方程的系數(shù)確定二次曲線的形狀,揭示其規(guī)律也是數(shù)學(xué)的經(jīng)典內(nèi)容。
高二數(shù)學(xué)教學(xué)計劃 篇10
1。有助于學(xué)生數(shù)形結(jié)合思想的培養(yǎng)。
解析幾何的本質(zhì)是用代數(shù)的方法研究圖形的幾何性質(zhì),它溝通了代數(shù)與幾何之間的聯(lián)系,體現(xiàn)了數(shù)形結(jié)合的重要思想。在解析幾何初步的學(xué)習(xí)中,經(jīng)歷將幾何問題代數(shù)化、處理代數(shù)問題、分析代數(shù)結(jié)果的.幾何含義、解決幾何問題的過程,有助于學(xué)生認(rèn)識數(shù)學(xué)內(nèi)容之間的內(nèi)在聯(lián)系,體會數(shù)形結(jié)合的思想,形成正確的數(shù)學(xué)觀。
2。是培養(yǎng)學(xué)生運算能力的重要載體。
運算思想是數(shù)學(xué)中最重要的思想之一。解析幾何的運算,往往有較強的綜合性,設(shè)計相應(yīng)的代數(shù)方程知識(包括消元思想、整體思想、函數(shù)思想、同解原理、韋達(dá)定理、方程的解、構(gòu)造不等式、參變量代換、求解不等式)等內(nèi)容,對學(xué)生計算能力要求較高。在解決解析幾何問題時,要注重“數(shù)”與“形”的統(tǒng)一,在計算時,要結(jié)合圖形自身的特點,充分挖掘圖形的幾何結(jié)論,這往往是解決問題的突破口和簡化解題過程的有效方法。比如,涉及圓的問題時,注重運用圓的相關(guān)幾何性質(zhì),對于直線與圓的位置關(guān)系要強化幾何處理,淡化代數(shù)處理方法,解析幾何獨有的特點,最培養(yǎng)學(xué)生的運算能力起到了獨特的作用。
高二數(shù)學(xué)教學(xué)計劃 篇11
1。整體定位
“解析幾何初步”研究的問題是直線和圓,及其之間的關(guān)系,還有空間直角坐標(biāo)系的概念。高中階段解析幾何內(nèi)容的分布,除了“解析幾何初步”外,在選修系列1,2中,都延續(xù)了解析幾何的內(nèi)容,設(shè)計了“圓錐曲線與方程”。在選修系列4的《幾何證明選講》中,還將繼續(xù)研究圓錐曲線。研究圓錐曲線有兩種方法:綜合幾何的方法和解析幾何的方法。在選修系列4的《幾何證明選講》中,運用了綜合幾何的方法。
“解析幾何初步”是要依托直線的方程與圓的標(biāo)準(zhǔn)方程,讓學(xué)生把握用代數(shù)方法解決幾何問題的基本步驟,初步形成代數(shù)方法解決幾何問題的能力,幫助學(xué)生理解解析幾何的基本思想。
2。具體要求
(1)直線與方程
、僭谄矫嬷苯亲鴺(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;
、诶斫庵本的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;
、勰芨鶕(jù)斜率判定兩條直線平行或垂直;
、芨鶕(jù)確定直線位置關(guān)系的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系;
、菽苡媒夥匠探M的方法求兩直線的交點坐標(biāo);
⑥探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
、倩仡櫞_定圓的幾何要素,在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程與一般方程;
、谀芨鶕(jù)給定直線、圓的方程,判斷直線與圓、圓與圓的位置關(guān)系;
③能用直線和圓的'方程解決一些簡單的問題。
(3)在平面“解析幾何初步”的學(xué)習(xí)過程中,體會用代數(shù)方法處理幾何問題的思想。
(4)空間直角坐標(biāo)系
、偻ㄟ^具體情境,感受建立空間直角坐標(biāo)系的必要性,了解空間直角坐標(biāo)系,會空間直角坐標(biāo)系刻畫點的位置;
、谕ㄟ^表示特殊長方體(所有棱分別與坐標(biāo)軸平行)頂點的坐標(biāo),探索并得出空間兩點間的距離公式。
《標(biāo)準(zhǔn)》中對“解析幾何初步”的要求只是階段性要求,在選修系列1,2中,還將進一步學(xué)習(xí)圓錐曲線與方程的內(nèi)容。因此,對本部分內(nèi)容的教學(xué)要把握好“度”,特別是對于解析幾何思想的理解不能要求一步到位。
3。課標(biāo)解讀
(1)要注重知識的發(fā)生與發(fā)展的過程
解析幾何初步的教學(xué),要注重知識的發(fā)生與發(fā)展的過程,首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何元素及其關(guān)系,進而將幾何問題代數(shù)化;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。同時,應(yīng)強調(diào)借助幾何直觀理解代數(shù)關(guān)系的意義,即對代數(shù)關(guān)系的幾何意義的解釋。讓學(xué)生在這樣的過程中,不斷地體會“數(shù)形結(jié)合”的思想方法。
數(shù)學(xué)課程應(yīng)返璞歸真,努力揭示數(shù)學(xué)概念、法則、結(jié)論的發(fā)展過程和本質(zhì),要通過學(xué)生的自主探索活動,使學(xué)生理解數(shù)學(xué)概念、結(jié)論逐步形成的過程,體會蘊涵在其中的思想方法。在解析幾何初步的教學(xué)中,同樣要通過觀察、操作探索,確定直線與圓的幾何要素,并由此探索掌握直線與圓的幾種形式的方程,探索掌握一些距離公式。
比如如何在平面直角坐標(biāo)系中描述直線,這是解析幾何教學(xué)中遇到的第一個問題。在坐標(biāo)系中,一條直線或者與x軸平行,或者與x軸相交。與x軸平行的直線的代數(shù)特征很簡單,這條直線上的點的縱坐標(biāo)是個常數(shù),即y=a。除了x=a,還有什么方法可以刻畫與x軸相交的直線?也就是如何用代數(shù)的方法刻畫直線的斜率。
(2)在高中階段,直線的斜率一般一般有三種表示方式
、儆脙A斜角的正切
這是傳統(tǒng)教材的方式,由于傾斜角是大于等于0°小于180°,傾斜角與其正切一一對應(yīng)的(90°除外);當(dāng)然,也可以用傾斜角的余弦值表示直線的斜率,傾斜角與其余弦值是一一對應(yīng)的,但這種表示要復(fù)雜一些,一般都選擇使用傾斜角的正切。
這需要先引入0°到180°的正切函數(shù)的概念。
、谟孟蛄
高二數(shù)學(xué)教學(xué)計劃 篇12
1。知識內(nèi)容
2。 章節(jié)安排
本章教學(xué)時間約需18課時,具體分配如下:
1 直線與直線的方程 8課時
2 圓與圓的方程 5課時
3 空間直角坐標(biāo)系 3課時
高二數(shù)學(xué)教學(xué)計劃 篇13
一、學(xué)生基本情況
261班共有學(xué)生75人,268班共有學(xué)生72人。268班學(xué)習(xí)數(shù)學(xué)的氣氛較濃,但由于高一函數(shù)部分基礎(chǔ)特別差,對高二乃至整個高中的數(shù)學(xué)學(xué)習(xí)有很大的影響,數(shù)學(xué)成績尖子生多或少,但若能雜實復(fù)習(xí)好函數(shù)部分,加上學(xué)生又很努力,將來前途無量。若能好好的引導(dǎo),進一步培養(yǎng)他們的學(xué)習(xí)興趣,
二、教學(xué)要求
(一)情意目標(biāo)
(1)通過分析問題的方法的教學(xué)、通過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)提供生活背景,使學(xué)生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
(3)在探究不等式的性質(zhì)、圓錐曲線的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。 (6)讓學(xué)生體驗發(fā)現(xiàn) 挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程的幻妙多姿
(二)能力要求
1、培養(yǎng)學(xué)生記憶能力。
(1)在對不等式的性質(zhì)、平均不等式及思維方法與邏輯模式的學(xué)習(xí)中,進一步培養(yǎng)記憶能力。做到記憶準(zhǔn)確、持久,用時再現(xiàn)得迅速、正確。
(2)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。 (3)通過揭示解析幾何有關(guān)概念、公式和圖形直觀值見的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運算能力。
(1)通過解不等式及不等式組的訓(xùn)練,培養(yǎng)學(xué)生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算能力。
(3)通過解析法的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。
3、培養(yǎng)學(xué)生的思維能力。
(1)通過含參不等式的求解,培養(yǎng)學(xué)生思維的周密性及思維的'邏輯性。
(2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)通過不等式引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。
(4)加強知識的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的能力。
(5)通過解析幾何的概念教學(xué),培養(yǎng)學(xué)生的正向思維與逆向思維的能力。
(6)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。
4、培養(yǎng)學(xué)生的觀察能力。
(1)在比較鑒別中,提高觀察的準(zhǔn)確性和完整性。
(2)通過對個性特征的分析研究,提高觀察的深刻性。
(三)知識要求
1、掌握不等式的概念、性質(zhì)及證明不等式的方法,不等式的解法;
2、通過直線與圓的教學(xué),使學(xué)生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關(guān)系,掌握簡單線性規(guī)劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質(zhì)。
三、教材簡要分析
1、不等式的主要內(nèi)容是:不等式性質(zhì)、不等式證明、不等式解法。不等式性質(zhì)是基礎(chǔ),不等式證明是在其基礎(chǔ)上進行的;不等式的解法是在這一基礎(chǔ)上、依據(jù)不等式的性及同解變形來完成的。20xx年高二下數(shù)學(xué)教學(xué)計劃20xx年高二下數(shù)學(xué)教學(xué)計劃。不等式在整個高中數(shù)學(xué)中是一個重要的工具,是培養(yǎng)運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學(xué)習(xí)圓錐曲線、導(dǎo)數(shù)和微分等知識的的基礎(chǔ)。,是直線方程的一個直接應(yīng)用。主要內(nèi)容有:直線方程的幾種形式,線性規(guī)劃的初步知識,兩直線的位置關(guān)系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數(shù)形結(jié)合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并通過分析標(biāo)準(zhǔn)方程研究它們的性質(zhì)。
四、重點與難點
(一)重點
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關(guān)系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標(biāo)準(zhǔn)方程,簡單幾何性質(zhì)。
(二)難點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導(dǎo),簡單線性規(guī)劃的問題的解法。
3、用坐標(biāo)法研究幾何問題,求曲線方程的一般方法。
五、教學(xué)措施
1、教學(xué)中要傳授知識與培育能力相結(jié)合,充分調(diào)動學(xué)生學(xué)習(xí)的主動性,培育學(xué)生的概括能力,是學(xué)生掌握數(shù)學(xué)基本方法、基本技能。
2、堅持與高三聯(lián)系,切實面向高考,以五大數(shù)學(xué)思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。
3、加強教育教學(xué)研究,堅持學(xué)生主體性原則,堅持循序漸進原則,堅持啟發(fā)性原則。研究并采用以發(fā)現(xiàn)式教學(xué)模式為主的教學(xué)方法,全面提高教學(xué)質(zhì)量。
4、積極參加與組織集體備課,共同研究,努力提高授課質(zhì)量
5、堅持向同行聽課,取人所長,補己之短。相互研究,共同進步。
6、堅持學(xué)法研討,加強個別輔導(dǎo)(差生與優(yōu)生),提高全體學(xué)生的整體數(shù)學(xué)水平,培育尖子學(xué)生。
7、加強數(shù)學(xué)研究課的教學(xué)研究指導(dǎo),培養(yǎng)學(xué)識的動手能力。
六、課時安排
本學(xué)期共81課時
1、不等式18課時
2、直線與圓的方程25課時
3、圓錐曲線20課時
4、研究課18課時
高二數(shù)學(xué)教學(xué)計劃 篇14
一、指導(dǎo)思想
本學(xué)期高一備課組以學(xué)校教務(wù)處、教研組、年級組工作計劃為指導(dǎo),以提高教學(xué)質(zhì)量為目標(biāo),以優(yōu)化課堂教學(xué)為中心,團結(jié)合作,努力提高思想素質(zhì)和業(yè)務(wù)素質(zhì),互相學(xué)習(xí),認(rèn)真?zhèn)浜谜n,上好每一節(jié)課,并結(jié)合新教材的特點,開展研究性學(xué)習(xí)的活動,在教學(xué)中,認(rèn)真貫徹學(xué)校提出的“先學(xué)后教”的課堂教學(xué)改革方案,抓好基礎(chǔ)知識教學(xué),著重學(xué)生能力的培養(yǎng),打好基礎(chǔ),全面提高,爭取優(yōu)異的成績。
二、教學(xué)目標(biāo)
使大多數(shù)學(xué)生能夠掌握高中數(shù)學(xué)基本知識,解決問題的基本能力,提高學(xué)生的數(shù)學(xué)素養(yǎng)。使多數(shù)學(xué)生能夠進入高一級學(xué)府繼續(xù)學(xué)習(xí),提高學(xué)業(yè)水平測試的合格率以及優(yōu)秀率。
復(fù)習(xí)作為知識鞏固的一個有效方法在學(xué)習(xí)中必不可少。而復(fù)習(xí)課中例題的精選很重要,是否能起到溫故而知新的作用。對應(yīng)的復(fù)習(xí)課之后的配套練習(xí)與作業(yè)的反饋的落實也是復(fù)習(xí)的一個重要環(huán)節(jié)。因此如何精選專題復(fù)習(xí)例題與落實作業(yè)反饋成了我們備課組的關(guān)注點。
三、教學(xué)措施
這學(xué)期的學(xué)習(xí)內(nèi)容對學(xué)生來說,整體上偏難,特別是運算能力在這學(xué)期將得到深化和強化,所以對教師的要求也必將高。在教學(xué)內(nèi)容方面,我們還是主要按照我們學(xué)生的特點,對癥下藥,講清基本題,理順中檔題,適當(dāng)補充難題;普通班不追求偏和難,特別對圓錐曲線部分的一些重點、難點的計算題,必須詳細(xì)講解給學(xué)生聽,有些問題甚至需要多講解幾遍,讓絕大部分學(xué)生真正落實到位。每位教師上完課之后需要思考三個問題:我這節(jié)課上得如何?有誰的課比我還優(yōu)秀?怎樣上這節(jié)課更好、最好并在備課筆記上做好記錄,為以后的教育教學(xué)提供參考。在課課練上,以基本題為主,重點在中檔題上,做錯的問題要抓落實,不放棄任何一個學(xué)生,不放過任何一個問題。在課堂上,每位教師都要重視板書,因為學(xué)生的書寫不規(guī)范部分來源于教師的板書,每節(jié)課最低有1~2題在書寫上力求規(guī)范。
四、教學(xué)要求
整體把握新課程,理清貫穿教材的主要脈絡(luò),反映和揭示教學(xué)內(nèi)容的內(nèi)在聯(lián)系,展示重要概念的來龍去脈。完成新課標(biāo)要求,培養(yǎng)學(xué)生的.數(shù)學(xué)興趣,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識。還要滲透高考要求,倡導(dǎo)自主學(xué)習(xí)方式,逐漸提高學(xué)生的思維能力,養(yǎng)成獨立思考、積極探索的習(xí)慣,注重數(shù)學(xué)思想和方法的滲透,注重數(shù)學(xué)思維能力的培養(yǎng)。
五、具體工作
為了能夠?qū)⒓w備課落到實處,集體備課做到統(tǒng)一時間,統(tǒng)一地點,確定主要內(nèi)容。
(1)按上周集體備課中預(yù)先確定備課章節(jié),各位教師論輪流發(fā)言,指出備課中的思路,重點和難點。
。2)然后就上述內(nèi)容請備課組全體成員共同討論教學(xué)任務(wù)中的有關(guān)教學(xué)大綱,疏通教材,指出重難點,列舉一些典型例題,精選練習(xí)題等,并請有教學(xué)經(jīng)驗的老師做必要的解釋、說明和補充,備課組長認(rèn)真做好記錄,對于一些認(rèn)識分歧比較大的地方,認(rèn)真討論,達(dá)成共識。
。3)討論下周教案的編撰的具體事宜,確定四至五課時內(nèi)容的個體教學(xué)目標(biāo)、重難點、例題選編及作業(yè)的布置。
。4)最后就當(dāng)前的教學(xué)及工作情況,請備課組各成員相互交流,提出建議,說出不足,并由備課組長記錄整理,為以后的教學(xué)計劃或集體備課的適當(dāng)調(diào)整提供第一手寶貴資料。
以上幾點就是我們高二數(shù)學(xué)組在本學(xué)期的工作計劃,代表我們?nèi)w高二數(shù)學(xué)教師的工作打算,我們一定能夠落實好學(xué)校和部門的任務(wù),并能夠按照自身的特點和所教班級的具體情況認(rèn)真做好自己的教育教學(xué)工作。希望在我們?nèi)w教師的努力下,在期末聯(lián)考中能取得輝煌的成績。
【高二數(shù)學(xué)教學(xué)計劃】相關(guān)文章:
【薦】高二數(shù)學(xué)教學(xué)計劃02-04
【精】高二數(shù)學(xué)教學(xué)計劃02-28
高二數(shù)學(xué)教學(xué)計劃【熱門】03-01
高二數(shù)學(xué)教學(xué)計劃【精】12-29
高二數(shù)學(xué)教學(xué)計劃【推薦】12-28