- 相關(guān)推薦
作為一名教職工,常常要寫一份優(yōu)秀的說課稿,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。那么你有了解過說課稿嗎?下面是小編幫大家整理的高中數(shù)學(xué)說課稿,僅供參考,希望能夠幫助到大家。
高中數(shù)學(xué)說課稿1
一、教學(xué)目標(biāo)
1.借助對圖片、實例的觀察,抽象概括出直線與平面垂直的定義,并能正確理解直線與平面垂直的定義。
2.通過直觀感知,操作確認,歸納直線與平面垂直判定的定理,并能運用判定定理證明一些空間位置關(guān)系的簡單命題,進一步培養(yǎng)學(xué)生的空間觀念。
3.讓學(xué)生親身經(jīng)歷數(shù)學(xué)研究的過程,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重點、難點
1.教學(xué)重點:操作確認并概括出直線與平面垂直的定義和判定定理。
2.教學(xué)難點:操作確認并概括出直線與平面垂直的判定定理及初步運用。
三、課前準(zhǔn)備
1.教師準(zhǔn)備:教學(xué)課件
2.學(xué)生自備:三角形紙片、鐵絲(代表直線)、紙板(代表平面)、三角板
四、教學(xué)過程設(shè)計
1.直線與平面垂直定義的建構(gòu)
(1)動體的特征,對"線面垂直"有了一些初淺認識和感知,在高中階段,創(chuàng)設(shè)情境
、僬埻瑢W(xué)們觀察圖片,說出旗桿與地面、高樓的側(cè)棱與地面的位置有什么關(guān)系?
②請把自己的數(shù)學(xué)書打開直立在桌面上,觀察書脊與桌面的位置有什么關(guān)系?
、壅垖ⅱ僦衅鞐U與地面的位置關(guān)系畫出相應(yīng)的幾何圖形。
。2)觀察歸納
、偎伎迹阂粭l直線與平面垂直時,這條直線與平面內(nèi)的直線有什么樣的位置關(guān)系?
、诙嗝襟w演示:旗桿與它在地面上影子的位置變化。
、蹥w納出直線與平面垂直的定義及相關(guān)概念。
定義:如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說直線l與平面α互相垂直,記作:l⊥α.
直線l叫做平面α的垂線,平面α叫做直線l的'垂面.直線與平面垂直時,它們唯一的公共點P叫做垂足。
用符號語言表示為:(3)辨析(完成下列練習(xí)):
①如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線就與這個平面垂直。
②若a⊥α,bα,則a⊥b。
在創(chuàng)設(shè)情境中,學(xué)生練習(xí)本上畫圖,教師針對學(xué)生出現(xiàn)的問題,如不直觀、不標(biāo)字母等加以強調(diào),并指出這就叫直線與平面垂直,引出課題。
在多媒體演示時,先展示動畫1使學(xué)生感受到旗桿AB所在直線
與過點B的直線都垂直。再展示動畫2使學(xué)生明確旗桿AB所在直線
與地面內(nèi)任意一條不過點B的直線B1C1也垂直,進而引導(dǎo)學(xué)生歸納出
直線與平面垂直的定義。
在辨析問題中,解釋"無數(shù)"與"任何"的不同,并說明線面垂直的定義既是線面垂直的判定又是性質(zhì),線線垂直與線面垂直可以相互轉(zhuǎn)化,給出常用命題:
2.直線與平面垂直的判定定理的探究
(1)設(shè)置問題情境
提出問題:學(xué)校廣場上樹了一根新旗桿,現(xiàn)要檢驗它是否與地面垂直,你有什么好辦法?
。2)折紙試驗
如圖,請同學(xué)們拿出準(zhǔn)備好的一塊(任意)三角形的紙片,我們一起來做一個實驗:過△ABC的頂點A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上,(BD、DC與桌面接觸).觀察并思考:
、僬酆跘D與桌面垂直嗎?
、谌绾畏鄄拍苁拐酆跘D與桌面所在的平面垂直?
、鄱嗝襟w演示翻折過程。
(3)歸納直線與平面垂直的判定定理
、偎伎迹河烧酆跘D⊥BC,翻折之后垂直關(guān)系,即
AD⊥CD,AD⊥BD發(fā)生變化嗎?由此你能得到什么結(jié)論?
、跉w納出直線與平面垂直的判定定理。
定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。
用符號語言表示為:
在討論實際問題時,學(xué)生同桌合作進行試驗(將鐵絲當(dāng)旗桿,桌面當(dāng)?shù)孛妫┖蠼涣鞣桨福缬弥苯侨前辶恳淮,量兩次等。教師不作點評,說明完成下面的折紙試驗后就有結(jié)論。
在折紙試驗中,學(xué)生會出現(xiàn)"垂直"與"不垂直"兩種情況,引導(dǎo)這兩類學(xué)生進行交流,根據(jù)直線與平面垂直的定義分析"不垂直"的原因。學(xué)生再次折紙,進而探究直線與平面垂直的條件,經(jīng)過討論交流,使學(xué)生發(fā)現(xiàn)只要保證折痕AD是BC邊上的高,即AD⊥BC,翻折后折痕AD就與桌面垂直,再利用多媒體演示翻折過程,增強幾何直觀性。
在歸納直線與平面垂直的判定定理時,先讓學(xué)生敘述結(jié)論,不完善的地方教師引導(dǎo)、補充完整,并結(jié)合"兩條相交直線確定一個平面"的事實,簡要說明直線與平面垂直的判定定理。然后,學(xué)生試用圖形語言表述,練習(xí)本上畫圖,可能出現(xiàn)垂足與兩相交直線交點重合的情況(如圖),教師補充說明,同時給出符號語言表述。在理解直線與平面垂直的判定定理時,強調(diào)"兩條"、"相交"缺一不可,并結(jié)合前面"檢驗旗桿與地面垂直"問題再進行確認。指出要判斷一條直線與一個平面是否垂直,取決于在這個平面內(nèi)能否找到兩條相交直線和已知直線垂直,這充分體現(xiàn)了"直線與平面垂直"與"直線與直線垂直"相互轉(zhuǎn)化的數(shù)學(xué)思想。
3.直線與平面垂直的判定定理的初步應(yīng)用
。1)嘗試練習(xí):
求證:與三角形的兩條邊同時垂直的直線必與第三條邊垂直。
學(xué)生根據(jù)題意畫圖,將其轉(zhuǎn)化為幾何命題:不妨設(shè)
請三位同學(xué)板演,其余同學(xué)在練習(xí)本上完成,師生共同評析,明確運用線面垂直判定定理時的具體步驟,防止缺少條件,同時指出:這為證明"線線垂直"提供了一種方法。
。2)嘗試練習(xí):如圖,有一根旗桿AB高8m,它的頂端A掛有兩
條長10m的繩子,拉緊繩子并把它的下端放在地面上的兩點(和旗桿
腳不在同一條直線上)C、D。如果這兩點都和旗桿腳B的距離是6m,那么旗桿就和地面垂直.為什么?
本題需要通過計算得到線線垂直。學(xué)生練習(xí)本上完成后,對照課本P69例1,完善自己的解題步驟。
(3)嘗試練習(xí):如圖,已知a∥b,a⊥α,求證:b⊥α。
此題有一定難度,教師引導(dǎo)學(xué)生分析思路,可利用線面垂直的定
義證,也可用判定定理證,提示輔助線的添法,學(xué)生練習(xí)本上完成,對照課本P69例2,完善自己的解題步驟。
4.總結(jié)反思
(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些判斷直線與平面垂直的方法?
。2)在證明直線與平面垂直時應(yīng)注意哪些問題?
。3)本節(jié)課你還有哪些問題?
學(xué)生發(fā)言,互相補充,教師點評,歸納出判斷直線與平面垂直的方法,給出框圖(投影展示),同時,說明本課蘊含著轉(zhuǎn)化、類比、歸納、猜想等數(shù)學(xué)思想方法,強調(diào)"平面化"是解決立體幾何問題的一般思路,并鼓勵學(xué)生反思,大膽質(zhì)疑,教師作好記錄,以便查缺補漏。
5.布置作業(yè)
。1)如圖,點P是平行四邊形ABCD所在平面外一點,O是
對角線AC與BD的交點,且PA=PC,PB=PD.
求證:PO⊥平面ABCD
。2)課本P70練習(xí)2
。3)探究:如圖,PA⊥圓O所在平面,AB是圓O的直徑,C是圓周上一點,則圖中有幾個直角三角形?由此你認為三棱錐
中最多有幾個直角三角形?四棱錐呢?
【板書設(shè)計】教學(xué)設(shè)計說明
在這次新課程數(shù)學(xué)教學(xué)內(nèi)容中,立體幾何不論從教材編排還是教學(xué)要求上都發(fā)生了很大變化,因而,我在本節(jié)課的處理上也作了相應(yīng)調(diào)整,借助多媒體輔助教學(xué),采用"引導(dǎo)-探究式"教學(xué)方法。整個教學(xué)過程遵循"直觀感知-操作確認-歸納總結(jié)"的認知規(guī)律,注重發(fā)展學(xué)生的合情推理能力,降低幾何證明的難度,同時,加強空間觀念的培養(yǎng),注重知識產(chǎn)生的過程性,具體體現(xiàn)在以下幾個方面:
1.線面垂直的定義沒有直接給出,而是讓學(xué)生在對圖形、實例的觀察感知基礎(chǔ)上,借助動畫演示幫助學(xué)生概括得出,并通過辨析問題深化對定義的理解。這樣就避免了學(xué)生死記硬背概念,有利于理解數(shù)學(xué)概念的本質(zhì)。
2.線面垂直的判定定理不易發(fā)現(xiàn),在教學(xué)中,通過創(chuàng)設(shè)問題情境引起學(xué)生思考,安排折紙試驗,討論交流,給學(xué)生充分活動的時間與空間,幫助學(xué)生從自己的實踐中獲取知識。教師盡量少講,學(xué)生能做的事就讓他們自己去做,使學(xué)生更好的參與教學(xué)活動,展開思維,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興趣。
3.本節(jié)中教師不作例題示范,而是讓學(xué)生先嘗試完成,后講評明晰。為更好地鞏固判定定理,設(shè)置了有梯度的練習(xí),其中練習(xí)(1)是補充題,是判定定理的最簡單的運用。作業(yè)中增加了基礎(chǔ)題(第1題)和開放性題目(第3題),這樣,有助于培養(yǎng)學(xué)生的發(fā)散思維,使學(xué)生在不同的幾何體中體會線面垂直關(guān)系,發(fā)展學(xué)生的幾何直觀能力與一定的推理論證能力。同時,在教學(xué)中,始終注重訓(xùn)練學(xué)生準(zhǔn)確地進行三種語言(文字語言、圖形語言和符號語言)的轉(zhuǎn)換,培養(yǎng)運用圖形語言進行交流的能力。
4.以問題討論的方式進行小結(jié),培養(yǎng)學(xué)生反思的習(xí)慣,鼓勵學(xué)生對問題多質(zhì)疑、多概括。
高中數(shù)學(xué)說課稿2
尊敬的各位考官:
大家好,我是xx號考生,今天我說課的題目是《等差數(shù)列的前n項和》。
新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。
一、說教材
本節(jié)課選自人教A版高中數(shù)學(xué)必修5第二章。本節(jié)課是等差數(shù)列概念和特點等知識的延續(xù)和深化,也是后面學(xué)習(xí)等比數(shù)列及其前n項和的基礎(chǔ)。本節(jié)課既加深了對數(shù)列相關(guān)概念的理解,又蘊含了倒序相加法、特殊到一般的數(shù)學(xué)思想方法。在整個高中教學(xué)中起到承上啟下的重要作用。
二、說學(xué)情
接下來談?wù)剬W(xué)生的實際情況。本階段的學(xué)生已經(jīng)具備了一定的抽象邏輯思維能力,能在教師的引導(dǎo)下獨立地解決問題。因此在教學(xué)過程中要給學(xué)生留置充分的思考時間和空間。此外要注重在學(xué)生的已有認知基礎(chǔ)上建構(gòu)知識。
三、說教學(xué)目標(biāo)
根據(jù)以上分析,我制定了如下教學(xué)目標(biāo):
(一)知識與技能
掌握等差數(shù)列前n項和公式,理解其推導(dǎo)方法,能用公式解決簡單問題。
(二)過程與方法
經(jīng)歷觀察、思考、計算等探究過程,滲透從特殊到一般的數(shù)學(xué)思想方法。
(三)情感、態(tài)度與價值觀
在學(xué)習(xí)活動中獲得積極的、成功的情感體驗,激發(fā)學(xué)習(xí)興趣。
四、說教學(xué)重難點
在教學(xué)目標(biāo)的實現(xiàn)過程中,教學(xué)重點是等差數(shù)列前n項和公式,教學(xué)難點是公式的推導(dǎo)過程。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的`主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,我將采用講授法、練習(xí)法、自主探究、小組討論等教學(xué)方法。
六、說教學(xué)過程
下面重點談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)導(dǎo)入新課
導(dǎo)入環(huán)節(jié)我會設(shè)置情境。200多年前,高斯的算術(shù)老師提出了下面的問題:1+2+3+…+100=?據(jù)說,當(dāng)時其他同學(xué)忙于把100個數(shù)逐項相加時,10歲的高斯卻用非常巧妙的方法迅速得出了答案。
然后簡單分析1+2+3+…+100是求一個等差數(shù)列前100項的和。利用這一本質(zhì)引出本節(jié)課學(xué)習(xí)等差數(shù)列的前n項和。
將著名數(shù)學(xué)家融入課堂,既能激發(fā)學(xué)生的學(xué)習(xí)興趣,也注重了數(shù)學(xué)課堂的文化的學(xué)習(xí)和培養(yǎng)。此外利用數(shù)學(xué)家進行導(dǎo)入,滲透數(shù)學(xué)的發(fā)展史。
(二)探索新知
新授環(huán)節(jié)主要探究等差數(shù)列前n項和的計算公式,是本課的中心環(huán)節(jié)。
我會直接提問:你知道高斯是如何計算的嗎?相信大多數(shù)學(xué)生聽過這個故事,想到(1+100)+(2+99)+…+(50+51)=101×50=5050。
有了本道題目的鋪墊,我會繼續(xù)提問:1,2,3,…n,…這個數(shù)列的前n項和如何求呢?在這里組織同桌討論。并且提示學(xué)生思考:如何使得不管有奇數(shù)個還是偶數(shù)個都能恰好配對不剩余?
高中數(shù)學(xué)說課稿3
一、教材分析:
1、教材的地位與作用:
線性規(guī)劃是運籌學(xué)的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。
2、教學(xué)重點與難點:
重點:畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。
難點:在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。
二、目標(biāo)分析:
在新課標(biāo)讓學(xué)生經(jīng)歷"學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)"的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。
知識目標(biāo):
1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行
域和最優(yōu)解等概念;
2、理解線性規(guī)劃問題的圖解法;
3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.
能力目標(biāo):
1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。
2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線性規(guī)劃的理性認識過程中,培養(yǎng)學(xué)生運用數(shù)形結(jié)合思想解題的能力和化歸能力。
情感目標(biāo):
1、讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活,體驗數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。
2、讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;
3、讓學(xué)生學(xué)會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。
三、過程分析:
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)。因此,我將整個教學(xué)過程分為以下六個教學(xué)環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問題;6、歸納總結(jié),鞏固提高。
1、創(chuàng)設(shè)情境,提出問題:
在課堂教學(xué)的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學(xué)王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財富,還被列為20世紀(jì)對科學(xué)發(fā)展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學(xué)生的求知欲,引領(lǐng)學(xué)生進入學(xué)習(xí)情境。
接著我設(shè)置了一個具體的"問題"情境,即世界杯冠軍意大利足球隊(插圖片)營養(yǎng)師布拉加經(jīng)常遇到的這樣一類營養(yǎng)調(diào)配問題:
甲、乙、丙三種食物的維生素A、B的含量及成本如下表:
甲
乙
丙
維生素A(單位/千克)
400
600
400
維生素B(單位/千克)
800
200
400
成本(元/千克)
7
6
5
布拉加想購這三種食物共10千克,使之所含維生素A不少于4400單位,維生素B不少于4800單位,問三種食物各購多少時成本最低,最低成本是多少?
同學(xué)們,你能為布拉加解決這個棘手的問題嗎?
首先將此實際問題轉(zhuǎn)化為數(shù)學(xué)問題。我請學(xué)生完成這一過程如下:
解:設(shè)所購甲、乙兩種食物分別為x、y千克,則丙食物為10-x-y千克.
由題意可知x、y應(yīng)滿足條件:
即①
又設(shè)成本為z元,則z=7x+6y+5(10-x-y)=2x+y+50.
于是問題轉(zhuǎn)化為:當(dāng)x、y滿足條件
①,求成本z=2xy50的最小值問題。
【設(shè)計意圖】數(shù)學(xué)是現(xiàn)實世界的反映。通過學(xué)生關(guān)注的熱點問題引入,激發(fā)學(xué)生的興趣,引發(fā)學(xué)生的思考,培養(yǎng)學(xué)生從實際問題抽象出數(shù)學(xué)模型的能力。
2、分析問題,形成概念
那么如何解決這個求最值的問題呢?這是本次課的難點。我讓學(xué)生先自主探究,再分組討論交流,在學(xué)生遇到困難時,我運用化歸和數(shù)形結(jié)合的思想引導(dǎo)學(xué)生轉(zhuǎn)化問題,突破難點:⑴學(xué)生基于上一課時的學(xué)習(xí),討論后一般都能意識到要將不等式組①表示成平面區(qū)域。(教師動畫演示畫不等式組①表示的平面區(qū)域。)于是問題轉(zhuǎn)化為當(dāng)點(x,y)在此平面區(qū)域內(nèi)運動時,如何求z=2xy50的最小值的問題。⑵由于此問題難度較大,我試著這樣引導(dǎo)學(xué)生:由于已將x,y所滿足的條件幾何化了,你能否也給式子z=2xy50作某種幾何解釋呢?學(xué)生很自然地想到要將等式z=2xy50視為關(guān)于x,y的一次方程,它在幾何上表示直線。當(dāng)z取不同的值時可得到一族平行直線。于是問題又轉(zhuǎn)化為當(dāng)這族直線與此平面區(qū)域有公共點時,如何求z的最小值。⑶這一問題相對于部分學(xué)生來說仍有一定的難度,于是我繼續(xù)引導(dǎo)學(xué)生:如何更好地把握直線2xy50=z的幾何特征呢?學(xué)生討論交流后得出要將其改寫成斜截式y(tǒng)=-2xz-50。至此,學(xué)生恍然大悟:原來z-50就是直線在y軸上的截距,當(dāng)截距z-50最小時z也最小。于是問題又轉(zhuǎn)化為當(dāng)直線y=-2xz-50與平面區(qū)域有公共點時,在區(qū)域內(nèi)找一個點P,使直線經(jīng)過點P時在y軸上的截距最小。
。ňo接著我讓學(xué)生動手實踐,用作圖法找到點P(3,2),求出z的最小值為58,即最低成本為58元。)
【設(shè)計意圖】數(shù)學(xué)教學(xué)的核心是學(xué)生的'再創(chuàng)造。讓學(xué)生自主探究,體驗數(shù)學(xué)知識的發(fā)生、發(fā)展的過程,體驗轉(zhuǎn)化和數(shù)形結(jié)合的思想方法,從而使學(xué)生更好地理解數(shù)學(xué)概念和方法,突出了重點,化解了難點。
就在學(xué)生趣味盎然之際,我就此給出相關(guān)概念:
不等式組①是一組對變量x、y的約束條件,這組約束條件都是關(guān)于x、y的一次不等式,所以又稱為線性約束條件。z=2xy50是欲達到最大值或最小值所涉及的變量x、y的解析式,叫做目標(biāo)函數(shù)。由于z=2xy50又是x、y的一次解析式,所以又叫做線性目標(biāo)函數(shù)。
一般的,求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題。滿足線性約束條件的解(x,y)叫做可行解,由所有可行解組成的集合叫做可行域。其中使目標(biāo)函數(shù)取得最大值或最小值的可行解都叫做這個問題的最優(yōu)解。象上述求解線性規(guī)劃問題的方法叫圖解法。
由前面實際問題的解決自然地過渡到新概念的講解,使得知識的銜接較為順暢,概念的形成水到渠成。
3、反思過程,提煉方法
解題回顧是解題過程中重要又常被學(xué)生忽略的一個環(huán)節(jié)。我借用多媒體輔助教學(xué),動態(tài)演示解題過程,引導(dǎo)學(xué)生歸納、提煉求解步驟:
。1)畫可行域--畫出線性約束條件所確定的平面區(qū)域;
(2)過原點作目標(biāo)函數(shù)直線的平行直線l0;
(3)平移直線l0,觀察確定可行域內(nèi)最優(yōu)解的位置;
。4)求最值--解有關(guān)方程組求出最優(yōu)解,將最優(yōu)解代入目標(biāo)函數(shù)求最值。
簡記為畫--作--移--求四步。
4、變式演練,深入探究
為了讓學(xué)生更好地理解圖解法求線性規(guī)劃問題的內(nèi)在規(guī)律,我在例1的基礎(chǔ)上設(shè)計了例2和兩個變式:
例2.設(shè)z=2x-3y,式中變量x、y滿足下列條件,求z的最大值和最小值。
【設(shè)計意圖】進一步強調(diào)目標(biāo)函數(shù)直線的縱截距與z的最值之間的關(guān)系,有時并不是截距越大,z值越大。
變式1.設(shè)z=axy,式中變量x、y滿足下列條件,若目標(biāo)函數(shù)z僅在點(5,2)處取到最大值,求a的取值范圍。
變式2.設(shè)z=axy,式中變量x、y滿足下列條件,若使目標(biāo)函數(shù)z取得最大值的最優(yōu)解有無數(shù)個,求a的值。
【設(shè)計意圖】用已知有唯一(或無數(shù))最優(yōu)解時反過來確定目標(biāo)函數(shù)某些字母系數(shù)的取值范圍來訓(xùn)練學(xué)生從各個不同的側(cè)面去理解圖解法求最優(yōu)解的實質(zhì),培養(yǎng)學(xué)生思維的發(fā)散性。
。ㄒ陨蟽蓚變式均讓學(xué)生用幾何畫板進行實驗,探求解決方法。并引導(dǎo)學(xué)生總結(jié)出:最優(yōu)解一定位于多邊形可行域的頂點或邊界直線處。)
5、運用新知,解決問題
"學(xué)數(shù)學(xué)而不練,猶如入寶山而空返"。為了及時鞏固知識,反饋教學(xué)信息,我安排了如下練習(xí):
練習(xí)1:教材p64練習(xí)第1題
【設(shè)計意圖】及時檢驗學(xué)生利用圖解法解線性規(guī)劃問題的情況。
練習(xí)2:設(shè)z=2xy,式中變量x、y滿足下
列條件①,求z的最大值和最小值。
(學(xué)生獨立完成鞏固性練習(xí),老師投影有代表性的學(xué)生解答過程,給予積極性的評價,并強調(diào)注意點。同座同學(xué)間相互交流、批改和更正。)
【設(shè)計意圖】除了幫助學(xué)生鞏固新學(xué)的知識,還能引導(dǎo)學(xué)生運用新知識,迅速清楚地發(fā)現(xiàn)以前用解不等式的知識錯解此類題的原因。讓學(xué)生再一次深刻體會到數(shù)形結(jié)合的妙處,同時又鞏固了舊知識,完善了知識結(jié)構(gòu)體系。
6、歸納總結(jié),鞏固提高
。1)歸納總結(jié)
為使學(xué)生對所學(xué)的知識有一個完整而深刻的印象,我請學(xué)生從以下兩方面自己小結(jié)。
。1)這節(jié)課學(xué)習(xí)了哪些知識?
。2)學(xué)到了哪些思考問題的方法?
。▽W(xué)生回答)
【設(shè)計意圖】有利于學(xué)生養(yǎng)成及時總結(jié)的良好習(xí)慣,并將所學(xué)知識納入已有的認知結(jié)構(gòu),同時也培養(yǎng)了學(xué)生數(shù)學(xué)交流和表達的能力。
。2)鞏固提高
布置作業(yè):
1.閱讀本節(jié)內(nèi)容,完成課本P65習(xí)題7.4第2題
2.思考題:設(shè)z=2x-y,式中變量x、y滿足下列條件
且變量x、y為整數(shù),求z的最大值和最小值。
【設(shè)計意圖】讓學(xué)生鞏固所學(xué)內(nèi)容并進行自我檢測與評價,并為下一課時解決實際問題中的最優(yōu)解是整數(shù)解的教學(xué)埋下伏筆。
四、教法分析:
鑒于我校高二學(xué)生已具有較好的數(shù)學(xué)基礎(chǔ)知識和較強的分析問題、解決問題的能力,本節(jié)課我以學(xué)生為中心,以問題為載體,采用啟發(fā)、引導(dǎo)、探索相結(jié)合的教學(xué)方法。
。1)設(shè)置"問題"情境,激發(fā)學(xué)生解決問題的欲望;
。2)提供"觀察、探索、交流"的機會,引導(dǎo)學(xué)生獨立思考,有效地調(diào)動學(xué)生思維,使學(xué)生在開放的活動中獲取知識。
(3)利用多媒體輔助教學(xué),直觀生動地呈現(xiàn)圖解法求最優(yōu)解的過程,既加大課堂信息量,又提高了教學(xué)效率。
(4)指導(dǎo)學(xué)生做到"四會":會疑;會議;會思;會變。在教學(xué)過程中,重視學(xué)生的探索經(jīng)歷和發(fā)現(xiàn)新知的體驗,使學(xué)生形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)策略。
五、評價分析
本節(jié)課我的設(shè)計理念遵循以下四條原則:以問題為載體;以學(xué)生為主體;以合作交流為手段;以能力提高為目的。重視概念的提取過程;知識的形成過程;解題的探索過程;情感的體驗過程。學(xué)生通過自主探究、合作交流,體會合作學(xué)習(xí)的默契和諧,體會冥思苦想后的豁然開朗,體會邏輯思維的嚴(yán)謹(jǐn)美,體會一題多變的變幻美,體會數(shù)形結(jié)合的奇異美。
高中數(shù)學(xué)說課稿4
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的.解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
①2x-7=0;②2x-7>0;③2x-7<0
學(xué)生回答,我板書
高中數(shù)學(xué)說課稿5
尊敬的各位考官:
大家好,我是X號考生,今天我說課的題目是《圓的標(biāo)準(zhǔn)方程》。
對于本節(jié)課,我將以教什么、怎么教、為什么這么教為思路,從教材分析、學(xué)情分析、教學(xué)重難點等幾個方面加以闡述。
一、說教材
首先談一談我對教材的理解。本節(jié)課選自人教A版實驗版高中數(shù)學(xué)必修二,主要探究圓的標(biāo)準(zhǔn)方程。此前學(xué)生已經(jīng)學(xué)習(xí)了在平面直角坐標(biāo)系中用方程表示直線,起到良好的鋪墊作用。本節(jié)課為后續(xù)學(xué)習(xí)圓的一般方程及進一步學(xué)習(xí)平面解析幾何打下基礎(chǔ)。
二、說學(xué)情
再來談?wù)剬W(xué)生的情況。高中生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。
三、說教學(xué)目標(biāo)
基于以上分析,我制定了如下三維教學(xué)目標(biāo):
(一)知識與技能
掌握圓的標(biāo)準(zhǔn)方程,能夠在給出基本條件的情況下求出圓的標(biāo)準(zhǔn)方程。
。ǘ┻^程與方法
經(jīng)歷探究圓的標(biāo)準(zhǔn)方程的過程,提升邏輯推理、直觀想象與數(shù)學(xué)運算能力。
(三)情感、態(tài)度與價值觀
獲得成功的體驗,增強學(xué)習(xí)數(shù)學(xué)的興趣與信心。
四、說教學(xué)重難點
在教學(xué)目標(biāo)的實現(xiàn)過程中,教學(xué)重點是圓的標(biāo)準(zhǔn)方程,教學(xué)難點是圓的`標(biāo)準(zhǔn)方程的探究過程。
五、說教法學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者。根據(jù)這一教學(xué)理念,本節(jié)課我將采用自主探究為主,輔以教師講解、小組討論等教學(xué)方法,層層遞進進行展開。
六、說教學(xué)過程
下面重點談?wù)勎覍虒W(xué)過程的設(shè)計。
。ㄒ唬⿲(dǎo)入新課
課堂伊始,為了鋪墊用方程表示平面圖形的思路,也為了幫助學(xué)生完善知識體系,我會帶領(lǐng)學(xué)生簡單回顧之前所學(xué)內(nèi)容——在平面直角坐標(biāo)系中用坐標(biāo)、用方程的方法表示一些點、直線,由確定直線的幾何要素推導(dǎo)出直線的方程。
進而提出能不能在平面直角坐標(biāo)系中表示其他圖形。用大屏幕展示一些圓形物品,請學(xué)生舉例更多圓形物品。然后提問:能否用方程的思想在平面直角坐標(biāo)系中表示圓?由此引出課題。
。ǘ┲v解新知
高中數(shù)學(xué)說課稿6
尊敬的各位考官:
大家好,我是今天的X號考生,今天我說課的題目是《正弦定理》。
新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。
一、說教材
教師對教材的掌握程度,是評判一位教師是否能上好一堂課的基本標(biāo)準(zhǔn)。在正式內(nèi)容開始之前,我要先談一談對教材的理解。
《正弦定理》是人教A版必修5第一章第一節(jié)的內(nèi)容,其主要內(nèi)容是正弦定理及其應(yīng)用。此前學(xué)習(xí)了三角函數(shù)的相關(guān)知識,且積累很多的證明、推導(dǎo)的經(jīng)驗,為本節(jié)課的學(xué)習(xí)都起到了一定的鋪墊作用。本節(jié)課的學(xué)習(xí),也為以后學(xué)習(xí)和解決生活中的一些問題提供幫助。因此本節(jié)的學(xué)習(xí)有著極其重要的地位。
二、說學(xué)情
合理把握學(xué)情是上好一堂課的基礎(chǔ),下面我來談?wù)剬W(xué)生的實際情況。
這一階段的學(xué)生已經(jīng)具備了一定的分析問題、解決問題的能力,且在知識方面也有了一定的積累。所以,教學(xué)中,利用學(xué)生的特點以及原有經(jīng)驗進行教學(xué),增強學(xué)生的課堂參與度。
三、說教學(xué)目標(biāo)
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識與技能
能證明正弦定理,并能利用正弦定理解決實際問題。
(二)過程與方法
通過正弦定理的推導(dǎo)過程,提高分析問題、解決問題的能力。
(三)情感、態(tài)度與價值觀
在正弦定理的推導(dǎo)過程中,感受數(shù)學(xué)的嚴(yán)謹(jǐn),提升對數(shù)學(xué)的興趣。
四、說教學(xué)重難點
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點為:正弦定理。難點:正弦定理的證明。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、啟發(fā)法、練習(xí)法、小組合作、自主探究等教學(xué)方法。
六、說教學(xué)過程
在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。
(一)導(dǎo)入新課
首先是導(dǎo)入環(huán)節(jié),我將采用溫故知新的導(dǎo)入方式。
復(fù)習(xí)初中學(xué)習(xí)的任意三角形中的`邊和角存在什么樣的關(guān)系。在學(xué)生回顧之后,再提問:能否得到這個邊、角關(guān)系準(zhǔn)確量化的表示?引出本節(jié)課學(xué)習(xí)的內(nèi)容——正弦定理。
通過溫故知新的導(dǎo)入方式,能為本節(jié)課的后續(xù)的教學(xué)做好鋪墊。
(二)講解新知
接下來是新課講授環(huán)節(jié),我將分為四部分,分別為在直角三角形中推導(dǎo)正弦定理、在銳角三角形中推導(dǎo)正弦定理、在鈍角三角形中推導(dǎo)正弦定理以及正弦定理的應(yīng)用。
素的過程叫做解三角形。
在介紹完正弦定理后,接下來介紹正弦定理的應(yīng)用。通過提問:我們利用正弦定理可以解決一些怎樣的解三角形問題呢?總結(jié):如果已知三角形的任意兩個角與一邊,由三角形內(nèi)角和定理,可以計算出三角形的另一角,并由正弦定理計算出三角形的另兩邊;如果已知三角形的任意兩邊與其中一邊的對角,應(yīng)用正弦定理,可以計算出另一邊的對角的正弦值,進而確定這個角和三角形其他的邊和角。
整節(jié)課,本著學(xué)生為主體,教師為主導(dǎo)的設(shè)計理念,結(jié)合教學(xué)內(nèi)容和學(xué)生的特點,利用學(xué)生已有的知識經(jīng)驗,采用層次性的問題,一步步引導(dǎo)學(xué)生思考交流、發(fā)現(xiàn)知識。并且在整個過程中,講授法、引導(dǎo)法、合作探究等多種教學(xué)方法的使用,不但讓學(xué)生學(xué)會知識,也培養(yǎng)學(xué)生的學(xué)習(xí)能力。通過這樣的設(shè)計,提升學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,提高學(xué)習(xí)數(shù)學(xué)的興趣。
(三)課堂練習(xí)
高中數(shù)學(xué)說課稿7
尊敬的各位考官:
大家好,我是今天的xx號考生,今天我說課的內(nèi)容是《單調(diào)性與最大(小)值》的第一課時《單調(diào)性》。
新課標(biāo)指出:高中數(shù)學(xué)課程對于認識數(shù)學(xué)與自然界、數(shù)學(xué)與人類社會的關(guān)系,認識數(shù)學(xué)的科學(xué)價值、文化價值,提高提出問題、分析和解決問題的能力,形成理性思維,發(fā)展智力和創(chuàng)新意識具有基礎(chǔ)性的作用。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。
一、說教材
本節(jié)課選自人教A版高中數(shù)學(xué)必修1第一章《集合與函數(shù)概念》的第三節(jié)《函數(shù)的基本性質(zhì)》第一小節(jié)《單調(diào)性與最大(小)值》的第一課時。本小節(jié)主要講解的內(nèi)容是函數(shù)的單調(diào)性以及最大、最小值的概念,本節(jié)課主要講解增減函數(shù)的概念以及單調(diào)性。之前學(xué)生對于函數(shù)的概念已經(jīng)進行了學(xué)習(xí),本節(jié)課是在原來的基礎(chǔ)上進一步鞏固函數(shù)的概念,但是主要是針對性質(zhì)的.學(xué)習(xí)。并且為之后研究函數(shù)的性質(zhì)、用函數(shù)的性質(zhì)解決生活中的問題起到非常關(guān)鍵性的作用。所以本節(jié)課的學(xué)習(xí)對于學(xué)生至關(guān)重要。
二、說學(xué)情
接下來談?wù)剬W(xué)生的實際情況。高中一年級的學(xué)生雖然剛剛步入高中,需要適應(yīng)高中的教學(xué)方式,但是學(xué)生的觀察能力、總結(jié)能力、歸納能力、類比能力、抽象能力等已經(jīng)發(fā)展的比較成熟。所以教學(xué)中,可以將更多的活動交給學(xué)生進行探究。還可以進行自主學(xué)習(xí),提高各方面的能力。
三、說教學(xué)目標(biāo)
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識與技能
認識函數(shù)值隨自變量的增大而增大(減小)的規(guī)律,由此得出增(減)函數(shù)的定義。掌握用定義證明函數(shù)單調(diào)性的基本方法與步驟。
(二)過程與方法
在研究函數(shù)性質(zhì)的過程中,通過自主探究活動,學(xué)習(xí)數(shù)學(xué)思考的基本方法,提高數(shù)學(xué)思維能力。
(三)情感態(tài)度價值觀
感知從具體到抽象、從特殊到一般、從感性到理性的認知過程,養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
四、說教學(xué)重難點
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:增(減)函數(shù)的定義。教學(xué)難點是:從圖象升降的直觀認識過渡到函數(shù)增減的數(shù)學(xué)符號語言表述;用定義證明函數(shù)的單調(diào)性。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,我將采用講授法、練習(xí)法、自主探究等教學(xué)方法。
六、說教學(xué)過程
下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。
(一)導(dǎo)入新課
首先是導(dǎo)入環(huán)節(jié),大屏幕直接展示圖1.3-1,并讓學(xué)生通過對兩個圖象的觀察,總結(jié)圖象具有什么特點,根據(jù)學(xué)生對圖象變化特點的表述,引出本節(jié)課研究的內(nèi)容為《單調(diào)性》。
這樣通過函數(shù)的圖象進行引入,既能夠提高學(xué)生的學(xué)習(xí)興趣,還能夠為后面研究增減函數(shù)的抽象定義做鋪墊,讓學(xué)生對于函數(shù)的性質(zhì)有比較直觀的認識。
(二)探索新知
接下來是教學(xué)中最重要的探索新知環(huán)節(jié),我主要分為以下幾步。
第一個內(nèi)容是對“上升”、“下降”的直觀認識。
高中數(shù)學(xué)說課稿8
一、教材分析
1、教材的地位和作用
推理與證明是人教版普通高中課程標(biāo)準(zhǔn)實驗教科書選修1—2第二章第一節(jié)內(nèi)容,思想貫穿于高中數(shù)學(xué)的整個知識體系,是新課標(biāo)教材的亮點之一。本節(jié)內(nèi)容將歸納推理的一般方法進行了必要的總結(jié)和歸納,同時也對后繼知識的學(xué)習(xí)起到引領(lǐng)的作用、
2、教材處理
《歸納推理》是培養(yǎng)學(xué)生觀察、分析、發(fā)現(xiàn)、概括、猜想和探索能力的極好素材。根據(jù)本節(jié)課標(biāo)要求:從演示觀察,先形象地真實舉例,然后轉(zhuǎn)化為猜想,引導(dǎo)探究典型例子分析,加強對概念的理解。
二、教學(xué)目標(biāo)分析:
1、知識技能目標(biāo):理解歸納推理的概念,了解歸納推理的作用,掌握歸納推理的一般步驟,會利用歸納進行一些簡單的歸納推理。
2、過程方法目標(biāo):學(xué)生自主學(xué)習(xí)歸納推理的一般方法,建構(gòu)歸納推理的思維方式、讓學(xué)生明白數(shù)學(xué)發(fā)現(xiàn)的過程和方法,培養(yǎng)學(xué)生分析解決問題的能力,鍛煉他們探索規(guī)律,融會貫通的能力,并使學(xué)生思維能力得到提升。
3、情感態(tài)度,價值觀目標(biāo):通過學(xué)生主動探究、合作學(xué)習(xí)、相互交流,培養(yǎng)不怕困難、勇于探索的優(yōu)良作風(fēng),增強學(xué)生的數(shù)學(xué)應(yīng)用意識,提高學(xué)生數(shù)學(xué)思維的情趣,給學(xué)生成功的體驗,形成學(xué)習(xí)數(shù)學(xué)知識、了解數(shù)學(xué)文化的積極態(tài)度、
三、教學(xué)的重點、難點分析:
1、教學(xué)重點:了解歸納推理含義、能利用歸納進行簡單推理。
教學(xué)策略:演示觀察,先形象地真實舉例,然后轉(zhuǎn)化為猜想,引導(dǎo)探究典型例子分析,加強對概念的理解
2、教學(xué)難點:用歸納進行推理,做出猜想。
教學(xué)策略:第一,創(chuàng)設(shè)情景;第二,觀察規(guī)律,得出猜想;第三,實際應(yīng)用,提出質(zhì)疑。
四、教法分析、教學(xué)手段與教具選擇:
1、教學(xué)方法:自主探究、協(xié)作學(xué)習(xí)、啟發(fā)發(fā)現(xiàn)、課堂討論法
2、教具:多媒體、粉筆、黑板。
3、教學(xué)手段:多媒體教學(xué)課件。
五、學(xué)法分析:
本課教給學(xué)生的學(xué)法是“發(fā)現(xiàn)問題、分析問題、解決問題”。因此本課教學(xué)過程中,讓學(xué)生帶著學(xué)習(xí)任務(wù)通過自主學(xué)習(xí)發(fā)現(xiàn)、課堂討論、相互合作等方式,使學(xué)生在完成任務(wù)的過程中不知不覺實現(xiàn)知識的傳遞、遷移和融合。
六、教學(xué)過程設(shè)計分析:
1、創(chuàng)設(shè)情景、引入新課
游戲:袋子里裝有大小質(zhì)地一樣的玻璃球,摸一個出來是紅色,摸第二個出來也是紅色,第三、第四還是紅色…
問題1:有什么猜想?
師生活動:老師把玻璃球攪拌均勻,可叫一個學(xué)生摸球,其他學(xué)生細心觀察。
設(shè)計意圖:游戲吸引學(xué)生注意力,提高學(xué)習(xí)興趣,形象地引出歸納推理。
問題2:觀察10=3+7,12=5+7,32=13+19 …等式特征,有怎樣的規(guī)律?
師生活動:這里要引導(dǎo)學(xué)生觀察:這是一個等式,左右兩邊數(shù)字有什么特征,學(xué)生的猜想多種多樣,不要抹殺學(xué)生的洞察力,可進一步引導(dǎo)學(xué)生嘗試:其它的偶數(shù)有同樣的規(guī)律嗎?
設(shè)計意圖:通過欣賞一些偉大猜想產(chǎn)生的過程,探索出歌德巴赫猜想:一個偶數(shù)(不小于6)總可以表示成兩個奇質(zhì)數(shù)之和。帶領(lǐng)學(xué)生走進歸納推理的領(lǐng)域。學(xué)生主動探究、自我發(fā)現(xiàn),培養(yǎng)勇于探索的優(yōu)良作風(fēng)。
問題3:歌德巴赫猜想的歷史了解嗎?
師生活動:通過多媒體讓學(xué)生閱讀材料。
設(shè)計意圖:提高學(xué)生數(shù)學(xué)思維的情趣,了解數(shù)學(xué)文化,對數(shù)學(xué)充滿信心的積極態(tài)度,培養(yǎng)愛國精神。
問題4:歌德巴赫猜想的推理過程如何?
師生活動:讓學(xué)生探究歌德巴赫是怎樣提出這個猜想的。
設(shè)計意圖:通過自己發(fā)現(xiàn)歌德巴赫猜想的推理過程———歸納推理的產(chǎn)生,為理解歸納推理的含義做鋪墊。
問題5:由上述推理過程能否用自己語言描述歸納推理的含義?
師生活動:學(xué)生自己總結(jié),教師個別提問,學(xué)生修改,該問題只有部分同學(xué)能及時地回答出來。有些同學(xué)猶疑不答,有些同學(xué)會說出不同的語句獲不全面、不十分準(zhǔn)確。教師通過評價學(xué)生的結(jié)論引入歸納推理含義——是由部分到整體、由個別到一般的推理。
設(shè)計意圖:使學(xué)生更深刻理解和記憶歸納推理的含義,培養(yǎng)學(xué)生歸納、總結(jié)、理解能力,這比老師直接給出概念效果要好得多。
問題6:你能用歸納推理提出一個猜想嗎?
師生活動:學(xué)生各抒己見,踴躍回答,有生活的,有數(shù)學(xué)的,其它學(xué)科的等。例如:
、 金、銀、銅、鐵、鋁等金屬能導(dǎo)電,歸納出“一切金屬都能導(dǎo)電”
② 硫酸、硝酸、碳酸等含有氧元素,歸納出“所有的酸都含有氧元素”
、刍@球、排球、乒乓球等是圓的,歸納出“所有的球都是圓的”
……
可以讓同學(xué)們相互補充,老師適當(dāng)點評和肯定。
設(shè)計意圖:更深一步具體理解歸納推理的含義,初步形成能用歸納推理得出結(jié)論的步驟。感受歸納推理無處不在,自然而有趣,創(chuàng)造和諧積極的學(xué)習(xí)氣氛。這比直接解釋概念記憶要深刻和通俗易懂。
2、典型例題、知識應(yīng)用
例:觀察右圖,可以發(fā)現(xiàn)
1+3=4=22,
1+3+5=9=32,
1+3+5+7=16=42,
1+3+5+7+9=25=52,
問題7:上面等式如何由圖中觀察出來?1+3+ …+1999=?由上述具體事實能得出怎樣的一般性規(guī)律?能用一條等式表示出來嗎?
師生活動:問題逐個解決,個別回答,集體回答相結(jié)合。部分學(xué)生會觀察上式,但不會從圖中總結(jié)規(guī)律,這里要從小正方形的個數(shù)或面積去引導(dǎo)他們觀察,引導(dǎo)學(xué)生得出等式的規(guī)律要看等號左右兩邊存在什么規(guī)律。
總結(jié):由幾條特殊的等式存在的規(guī)律,歸納出一般性的結(jié)論1+3+…+(2n-1)=n2(n∈N*)成立,這就是歸納推理。
設(shè)計意圖:給出例子讓學(xué)生通過直觀感知、觀察分析、歸納體會歸納推理的一般步驟,進一步感受歸納推理的作用。讓他們懂得數(shù)形結(jié)合去做題。
問題8:
師生活動:
題目沒有直接給出部分事物特征,應(yīng)先找出來再觀察、歸納、猜想、引導(dǎo)學(xué)生做題方向,個別提問,師生共同完成、總結(jié)。
設(shè)計意圖:體會歸納推理的一般步驟,進一步感受歸納推理的作用。讓學(xué)生感受歸納推理起到了能夠提供研究方向的作用,培養(yǎng)學(xué)生進行歸納推理的能力。
問題9、歸納推理的一般步驟如何?
師生活動:通過兩個例題,學(xué)生自行總結(jié),教師綜合結(jié)論得出
一般步驟:⑴對有限的資料進行觀察、分析、歸納整理;⑵提出帶有規(guī)律性的結(jié)論,即猜想;
設(shè)計意圖:總結(jié)步驟,為后面應(yīng)用打基礎(chǔ),讓學(xué)生自行總結(jié)充分體現(xiàn)學(xué)生的自主性。
3、思考練習(xí)
1)、觀察下面的“三角陣”
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 a 5 1
……
1 10 45 … … 45 10 1
試找出相鄰兩行數(shù)之間的關(guān)系,并求a
師生活動:學(xué)生觀察,尋找規(guī)律,老師和學(xué)生共同評價學(xué)生的觀察結(jié)果并接著問:上面“三角陣”還有其它規(guī)律嗎?讓學(xué)生分組討論回答
設(shè)計意圖:感受數(shù)學(xué)美和發(fā)現(xiàn)規(guī)律的喜悅,激發(fā)學(xué)生更積極地去尋找規(guī)律、認識規(guī)律。同時讓學(xué)生感受到只要做個有心人,發(fā)現(xiàn)規(guī)律并非難事。
2)、在數(shù)列{an}中,若a1=1,
an+1=(n∈N﹡),試猜想這個數(shù)列的通項公式、
師生活動:請三位學(xué)生上黑板板書,并另請三位批改,讓學(xué)生自己掌握做題方法和步驟
答案:通過運算a2、a3、a4等的值得出an=
3)、畫一畫、猜一猜:根據(jù)下列圖案中圓圈的排列規(guī)則,猜想第(5)個圖形是怎樣排列的,由多少個圓圈組成;第n個圖形中共有多少個圓圈?
n=1 n=2 n=3 n=4
師生活動:由學(xué)生在講義上作圖,發(fā)現(xiàn)規(guī)律并總結(jié),再通過學(xué)生之間充分討論之后相互交流,教師點評。
設(shè)計意圖:學(xué)生主動探究規(guī)律,感受歸納推理對發(fā)現(xiàn)新事實、得出新結(jié)論的作用。引導(dǎo)學(xué)生發(fā)現(xiàn)并總結(jié)規(guī)律。給學(xué)生創(chuàng)建一個開放的、有活力、有個性的數(shù)學(xué)學(xué)習(xí)環(huán)境,感受數(shù)學(xué)美和發(fā)現(xiàn)規(guī)律的喜悅,激發(fā)學(xué)生更積極地去尋找規(guī)律、認識規(guī)律。同時讓學(xué)生感受到只要做個有心人,發(fā)現(xiàn)規(guī)律并非難事。
答案:第5個圖形中共有圓圈21個;第n個圖形中共有圓圈:n(n—1)+1個
4、質(zhì)疑、解疑
問題9:猜想的一般結(jié)論是否成立?即歸納推理的可靠性如何?為什么要學(xué)習(xí)歸納推理?
師生活動:教師生動講述歐拉發(fā)現(xiàn)第五個費馬數(shù)的過程,激發(fā)學(xué)生的好奇心與求知欲,同時,通過“猜想——驗證——再猜想”說明科學(xué)的進步與發(fā)展處在一個螺旋上升的過程。
再例:硫酸、硝酸、碳酸等酸中含有氧元素,歸納出“所有的.酸都含有氧元素”。反例:鹽酸是酸,但不含氧元素
設(shè)計意圖:通過這個問題情境的設(shè)置,引起學(xué)生對歸納推理的結(jié)論可靠性進行思考。其結(jié)論具有猜測性、或然性,不能作為數(shù)學(xué)證明的依據(jù)。但它是一種具有創(chuàng)造性的推理,為研究問題提供一個方向讓學(xué)生在解決問題的過程中發(fā)現(xiàn)歸納推理需要檢驗過程,從而自我修正歸納推理的一般步驟。
問題10:組織學(xué)生進行分組討論,引導(dǎo)學(xué)生從生活和學(xué)習(xí)兩大方面對歸納推理的應(yīng)用進行舉例。
師生活動:分組競賽,挑1、2個小組的題目出來讓其他小組進行分析。
設(shè)計意圖:分組討論降低了概念學(xué)習(xí)的難度,加深對歸納推理的應(yīng)用使學(xué)生能夠更多的圍繞重點展開探索和研究。學(xué)生的主體意識在這里獲得充分的體現(xiàn)。
七、課堂小結(jié):
1、你在知識方面學(xué)會了什么?
2、你注意到過程與方法了嗎?
3、你在思維和情感方面有何收益?
師生活動:學(xué)生討論總結(jié),相互補充,教師點評。
設(shè)計意圖:讓學(xué)生自己小結(jié),這是一個多維整合的過程,是一個高層次的自我認識過程。
八、作業(yè)
1、(必做題)課本P30第1題
2、(選做題):猜想10條直線的交點最多有多少個?(畫圖分析)答案:45個
3、課后學(xué)習(xí):上網(wǎng)查找了解有關(guān)“四色猜想”、“哥尼斯堡七橋猜想”、“敘拉古猜想”、“費馬猜想”等資料
設(shè)計意圖:設(shè)計必做題是知識的初步應(yīng)用和基礎(chǔ)知識的鞏固選做題是針對學(xué)有余力的同學(xué)提升高度,鏈接高考。思考題是開放性題目,拓展學(xué)生思維,用資料進行數(shù)學(xué)學(xué)習(xí),同時讓學(xué)生了解網(wǎng)絡(luò)是自主學(xué)習(xí)和拓展知識面的一個重要平臺。這是本節(jié)內(nèi)容的一個提高與拓展。
九、教學(xué)效果分析:
本節(jié)課以問題為載體,設(shè)計情景,生活、數(shù)學(xué)實力生動地學(xué)習(xí)了歸納推理的知識,體現(xiàn)了學(xué)生主動,教師指導(dǎo)的地位。本節(jié)課在注重基礎(chǔ)知識的同時培養(yǎng)學(xué)生歸納推理的能力,在尊重學(xué)生個性差異的基礎(chǔ)上選擇合適的例題、習(xí)題,為不同層次學(xué)生的學(xué)習(xí)提供了廣闊的空間。以分組討論為探究的基本形式,激勵學(xué)生積極主動地探索結(jié)論,同時利用著名猜想讓學(xué)生體會數(shù)學(xué)的人文價值。通過生活實例和數(shù)學(xué)實例,使學(xué)生了解歸納推理的涵義,感受歸納推理能猜測和發(fā)現(xiàn)一些新結(jié)論,探索和提供解決一些問題的思路和方向的作用,并能運用歸納進行簡單的推理、
十、板書設(shè)計
歸納推理
一、推理
二、歸納推理的含義
三、歸納推理的應(yīng)用
四、歸納推理的一般步驟
五、小結(jié)
例1
例2
練習(xí)
高中數(shù)學(xué)說課稿9
一、教材分析
1.教材所處的地位和作用
在學(xué)習(xí)了隨機事件、頻率、概率的意義和性質(zhì)及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現(xiàn)信息技術(shù)的優(yōu)越性而新增的內(nèi)容。
2.教學(xué)的重點和難點
重點:正確理解隨機數(shù)的概念,并能應(yīng)用計算器或計算機產(chǎn)生隨機數(shù)。
難點:建立概率模型,應(yīng)用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現(xiàn)實問題。
二、教學(xué)目標(biāo)分析
1、知識與技能:
(1)了解隨機數(shù)的概念;
(2)利用計算機產(chǎn)生隨機數(shù),并能直接統(tǒng)計出頻數(shù)與頻率。
2、過程與方法:
(1)通過對現(xiàn)實生活中具體的概率問題的探究,感知應(yīng)用數(shù)學(xué)解決問題的方法,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力;
(2)通過模擬試驗,感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習(xí)慣
3、情感態(tài)度與價值觀:
通過數(shù)學(xué)與探究活動,體會理論來源于實踐并應(yīng)用于實踐的辯證唯物主義觀點.
三、教學(xué)方法與手段分析
1、教學(xué)方法:本節(jié)課我主要采用啟發(fā)探究式的教學(xué)模式。
2、教學(xué)手段:利用多媒體技術(shù)優(yōu)化課堂教學(xué)
四、教學(xué)過程分析
㈠創(chuàng)設(shè)情境、引入新課
情境1:假設(shè)你作為一名食品衛(wèi)生工作人員,要對某超市內(nèi)的80袋小包裝餅干中抽取10袋進行衛(wèi)生達標(biāo)檢驗,你打算如何操作?
預(yù)設(shè)學(xué)生回答:
、挪捎煤唵坞S機抽樣方法(抽簽法)
⑵采用簡單隨機抽樣方法(隨機數(shù)表法)
教師總結(jié)得出:隨機數(shù)就是在一定范圍內(nèi)隨機產(chǎn)生的數(shù),并且得到這個范圍內(nèi)每一數(shù)的機會一樣。(引入課題)
「設(shè)計意圖」(1)回憶統(tǒng)計知識中利用隨機抽樣方法如抽簽法、隨機數(shù)表法等進行抽樣的步驟和特征;(2)從具體試驗中了解隨機數(shù)的含義。
情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現(xiàn)在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費時間太多了,有沒有其他方法可以代替試驗?zāi)?
「設(shè)計意圖」當(dāng)需要隨機數(shù)的量很大時,用手工試驗產(chǎn)生隨機數(shù)速度太慢,從而說明利用現(xiàn)代信息技術(shù)的重要性,體現(xiàn)利用計算器或計算機產(chǎn)生隨機數(shù)的必要性。
、娌僮鲗嵺`、了解新知
教師:向?qū)W生介紹計算器的操作,讓他們了解隨機函數(shù)的原理?墒孪染幹茙讉小問題,在課堂上帶著學(xué)生用計算器(科學(xué)計算器或圖形計算器)操作一遍,讓學(xué)生熟悉如何用計算器產(chǎn)生隨機數(shù)。
「設(shè)計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學(xué)生自己按照規(guī)則操作,熟悉計算器產(chǎn)生隨機數(shù)的操作流程,了解隨機數(shù)。
問題1:拋一枚質(zhì)地均勻的硬幣出現(xiàn)正面向上的概率是50,你能設(shè)計一種利用計算器模擬擲硬幣的試驗來驗證這個結(jié)論嗎?
思考:隨著模擬次數(shù)的.不同,結(jié)果是否有區(qū)別,為什么?
「設(shè)計意圖」⑴設(shè)計概率模型是解決概率問題的難點,也是能解決概率問題的關(guān)鍵,是數(shù)學(xué)建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基本事件用兩個隨機數(shù)來代替。(題目讓學(xué)生通過熟悉50想到用隨機數(shù)0,1來模擬,為后面問題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。
問題2:(1)剛才我們利用了計算器來產(chǎn)生隨機數(shù),我們知道計算機有許多軟件有統(tǒng)計功能,你知道哪些軟件具有隨機函數(shù)這個功能?
(2)你會利用統(tǒng)計軟件Excel來產(chǎn)生隨機數(shù)0,1嗎?你能設(shè)計一種利用計算機模擬擲硬幣的試驗嗎?
「設(shè)計意圖」⑴了解有許多統(tǒng)計軟件都有隨機函數(shù)這個功能,并與前面第一章所學(xué)的用程序語言編寫程序相聯(lián)系;⑵Excel是學(xué)生比較熟悉的統(tǒng)計軟件,也可讓學(xué)生回顧初中用Excel畫統(tǒng)計圖的一些功能和知識,其次讓學(xué)生掌握多種隨機模擬試驗方法。
問題3:(1)你能在Excel軟件中畫試驗次數(shù)從1到100次的頻率分布折線圖嗎?
(2)當(dāng)試驗次數(shù)為1000,1500時,你能說說出現(xiàn)正面向上的頻率有些什么變化?
「設(shè)計意圖」⑴應(yīng)用隨機模擬方法估計古典概型中隨機事件的概率值;
、企w會頻率的隨機性與相對穩(wěn)定性,經(jīng)歷用計算機產(chǎn)生數(shù)據(jù),整理數(shù)據(jù),分析數(shù)據(jù),畫統(tǒng)計圖的全過程,使學(xué)生相信統(tǒng)計結(jié)果的真實性、隨機性及規(guī)律性。
、缰v練結(jié)合、鞏固新知
問題4:天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?
問1:能用古典概型的計算公式求解嗎?
你能說明一下這為什么不是古典概型嗎?
問2:你如何模擬每一天下雨的概率為40?
「設(shè)計意圖」⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關(guān)鍵,是隨機模擬方法應(yīng)用的重點,也是難點之一。
⑵鞏固用隨機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復(fù)雜的概率應(yīng)用題。
歸納步驟:第一步,設(shè)計概率模型;
第二步,進行模擬試驗;
方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數(shù);
方法二:(隨機模擬方法--計算機模擬)
第三步,統(tǒng)計試驗的結(jié)果。
課堂檢測將一枚質(zhì)地均勻的硬幣連擲三次,出現(xiàn)"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數(shù)。
「設(shè)計意圖」通過練習(xí),進一步鞏固學(xué)生對本節(jié)課知識的掌握。
㈣歸納小結(jié)
(1)你能歸納利用隨機模擬方法估計概率的步驟嗎?
(2)你能體會到隨機模擬的優(yōu)勢嗎?請舉例說說。
「設(shè)計意圖」⑴通過問題的思考和解決,使學(xué)生理解模擬方法的優(yōu)點,并充分利用信息技術(shù)的優(yōu)勢;⑵是對知識的進一步理解與思考,又是對本節(jié)內(nèi)容的回顧與總結(jié)。
㈤布置練習(xí):
課本練習(xí)3、4
「設(shè)計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。
[內(nèi)容結(jié)束]
高中數(shù)學(xué)說課稿10
一、教材分析
本課時的內(nèi)容是數(shù)列的定義,通項公式及運用;本課是在學(xué)習(xí)映射、函數(shù)知識基礎(chǔ)上研究數(shù)列,既對進一步理解數(shù)列,又為今后研究等差、等比數(shù)列打下基礎(chǔ),起著承前啟后的重要作用.
首先,數(shù)列,特別是等差數(shù)列與等比數(shù)列,有著較為廣泛的應(yīng)用。值得一提的是,數(shù)列在產(chǎn)品尺寸標(biāo)準(zhǔn)化方面有著重要作用。例如在我國已頒布的供各種生產(chǎn)部門設(shè)計產(chǎn)品尺寸用的國家標(biāo)準(zhǔn),就是按等比數(shù)列對產(chǎn)品尺寸進行分級的。
其次,數(shù)列在整個中學(xué)數(shù)學(xué)教學(xué)內(nèi)容中,處于一個知識匯合點的地位,很多知識都與數(shù)列有著密切聯(lián)系,過去學(xué)過的數(shù)、式、方程、函數(shù)、簡易邏輯等知識在這一章均得到了較為充分的應(yīng)用,而學(xué)習(xí)數(shù)列又為后面學(xué)習(xí)數(shù)列與函數(shù)的極限等內(nèi)容作了鋪墊。應(yīng)該說:新課本采取將代數(shù)、幾何打通的混編體系的主要目的是強化數(shù)學(xué)知識的內(nèi)在聯(lián)系,而數(shù)列正是將各知識勾通方面發(fā)揮了重要作用。
最后,由于不少關(guān)系恒等變形、解方程(組)以及一些帶有綜合性的數(shù)學(xué)問題都與等差數(shù)列、等比數(shù)列有關(guān),從而有助于培養(yǎng)學(xué)生綜合運用知識解決問題的能力。因此本節(jié)內(nèi)容起到一個鞏固舊知,熟練方法,拓展新知的承接作用。
二、學(xué)生情況分析
學(xué)習(xí)障礙:
本節(jié)課是學(xué)習(xí)數(shù)列的起始課,在學(xué)習(xí)中會遇到下列障礙:
1.對數(shù)列定義中的關(guān)鍵詞"按一定次序"的理解有些模糊.
2.對數(shù)列與函數(shù)的關(guān)系認識不清.
3.對數(shù)列的表示,特別是通項公式an=f(n)感到困惑.對數(shù)列的通項公式可以不只一個覺得不可思議.
4.由數(shù)列的前幾項寫不出數(shù)列的通項公式.
學(xué)習(xí)策略:
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子等.
。2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強調(diào)數(shù)列的項是按一定順序排列的,"次序"便是函數(shù)的自變量,相同的數(shù)組成的.數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。
。3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,可多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式是學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征,讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。最后老師與學(xué)生共同歸納一些規(guī)律性的結(jié)論。
1、并非所有數(shù)列都能寫出它的通項公式;如④
2、有些數(shù)列的通項公式在形式上不一定是唯一的。如數(shù)列1,-1,1,-1,1,-1,...的通項可寫成或或等
3、當(dāng)一個數(shù)列出現(xiàn)""、"-"相間時,應(yīng)先把符號分離出來,用等來控制;
4、有些數(shù)列的通項公式可以用分段的形式來表示;
5、熟悉常見數(shù)列的通項:三、教學(xué)方法及教學(xué)手段分析
考慮到學(xué)生已學(xué)過映射、函數(shù)的特點,為突破難點,在教學(xué)上,我著重從以下幾個方面:(1)數(shù)列的定義,通項公式;(2)歸納通項公式;(3)畫出數(shù)列的圖像;(4)把數(shù)列的通項公式理解為一種特殊函數(shù),采取了講解、引導(dǎo)、探索式相結(jié)合的教學(xué)方法啟發(fā)學(xué)生積極思考、勇于創(chuàng)新.
(一)啟發(fā)誘導(dǎo)式:舉實例讓學(xué)生找規(guī)律,得到數(shù)列的基本知識。
。ǘ┳灾鲗W(xué)習(xí)式:根據(jù)數(shù)列的定義和前面所學(xué)的函數(shù)關(guān)系,由學(xué)生自己通過聯(lián)想、類比、對比、歸納的方法遷移到新情境中,將新的知識內(nèi)化到學(xué)生原有的認知結(jié)構(gòu)中去。
。ㄈ﹩栴}解決式:設(shè)計的每一個探究問題的解答過程。
(四)利用多媒體教學(xué)手段,引入課題,能激發(fā)學(xué)生學(xué)習(xí)興趣,增加數(shù)學(xué)人文色彩,同時也闡述了數(shù)列來源于實際,化抽象為具體,增強動感與直觀性,同時也提高教學(xué)效果和教學(xué)質(zhì)量
總之1、本節(jié)課是數(shù)列的起始課,設(shè)置情景、激發(fā)興趣有利于學(xué)生學(xué)好本章知識;
2、把數(shù)列與集合、函數(shù)對比學(xué)習(xí),有利于鞏固舊知識,掌握新知識,使所學(xué)知識形成系統(tǒng)化;
3、教法和學(xué)法上突出教材重點、力求突破難點,加深學(xué)生對知識的理解。較多地采用提問(包括設(shè)問);在教學(xué)材料呈現(xiàn)上以多媒體形式給出。例題的配備由淺入深、滲透了思維活動組織上由此及彼的類比推理概括的方法。貫徹"教師為主導(dǎo)、學(xué)生為主體、探究為主線、思維為主攻"的教學(xué)思想,采取"精講、善導(dǎo)、激趣、引思"的八字方針。
高中數(shù)學(xué)說課稿11
各位老師:
今天我說課的題目是《條件語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計:
一、教材分析
1.教材所處的地位和作用
在此之前,學(xué)生已學(xué)習(xí)了算法的概念、程序框圖與算法的基本邏輯結(jié)構(gòu)、輸入語句、輸出語句和賦值語句,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。這一節(jié)課主要的內(nèi)容為條件語句表示方法、結(jié)構(gòu)以及用法。條件語句與程序圖中的條件結(jié)構(gòu)相對應(yīng),它是五種基本算法語句中的一種,。通過本節(jié)課的學(xué)習(xí),學(xué)生將更加了解算法語句,并能用更全面的眼光看待前面學(xué)過的語句,并為以后的學(xué)習(xí)作好必要的準(zhǔn)備。本節(jié)課對學(xué)生算法語言能力、有條理的思考與清晰地表達的能力,邏輯思維能力的綜合提升具有重要作用。
2.教學(xué)的重點和難點
重點:條件語句的表示方法、結(jié)構(gòu)和用法;用條件語句表示算法。
難點:理解條件語句的表示方法、結(jié)構(gòu)和用法。
二、教學(xué)目標(biāo)分析
1.知識與技能目標(biāo):
、耪_理解條件語句的概念,并掌握其結(jié)構(gòu)。
、茣(yīng)用條件語句編寫程序。
2.過程與方法目標(biāo):
、磐ㄟ^實例,發(fā)展對解決具體問題的過程與步驟進行分析的能力。
⑵通過模仿,操作、探索、經(jīng)歷設(shè)計算法、設(shè)計框圖、編寫程序以解決具體問題的過程,發(fā)展應(yīng)用算法的能力。
、窃诮鉀Q具體問題的過程中學(xué)習(xí)條件語句,感受算法的重要意義。
3.情感,態(tài)度和價值觀目標(biāo)
⑴能通過具體實例,感受和體會算法思想在解決具體問題中的意義,進一步體會算法思想的重要性,體驗算法的有效性,增進對數(shù)學(xué)的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感,增強學(xué)習(xí)數(shù)學(xué)的樂趣。
⑵通過感受和認識現(xiàn)代信息技術(shù)在解決數(shù)學(xué)問題中的重要作用和威力,形成自覺地將數(shù)學(xué)理論和現(xiàn)代信息技術(shù)結(jié)合的思想。
、窃诰帉懗绦蚪鉀Q問題的過程中,逐步養(yǎng)成扎實嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
三、教學(xué)方法與手段分析
1.教學(xué)方法:根據(jù)本節(jié)內(nèi)容邏輯性強,學(xué)生不易理解的特點,本節(jié)教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這種方法的.原因是學(xué)生的邏輯能力不是很強,只能通過對實例的認真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。
2.教學(xué)手段:運用計算機、圖形計算器輔助教學(xué)
四、教學(xué)過程分析
1.創(chuàng)設(shè)情境(約4分鐘)
首先,我要求學(xué)生們編寫程序,輸入一元二次方程
的系數(shù),輸出它的實數(shù)根。這樣可以把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,因為要解決這一問題,根據(jù)我們之前所學(xué)的三種算法語句是無法解決的,這樣就引出今天我們所要學(xué)習(xí)的內(nèi)容。
2.探究新知(約8分鐘)
為了引入概念,我首先給出了一個基本的應(yīng)用條件語句能夠解決的例題:
例1 編寫一個程序,求實數(shù)x的絕對值。
整個過程由師生共同分析完成。老師要引導(dǎo)學(xué)生分析、研究例題中的兩個程序,既要讓學(xué)生們看到已知的三種語句,更要注意到未知的語句,即條件語句?偨Y(jié)上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進行研究.
3.知識應(yīng)用(約15分鐘)
此環(huán)節(jié)有兩個例題
例2 編寫程序,寫出輸入兩個數(shù)a和b,將較大的數(shù)打印出來
例3 編寫程序,使任意輸入的3個整數(shù)按從大到小的順序輸出.
先把解決問題的思路用程序框圖表示出來,然后再根據(jù)程序框圖給出的算法步驟,逐步把算法用對應(yīng)的程序語句表達出來。(程序框圖先由學(xué)生討論,再統(tǒng)一,然后利用圖形計算器演示,學(xué)生會驚喜的發(fā)現(xiàn):自己也是個編程高手了!這樣可以激發(fā)學(xué)生們的學(xué)習(xí)興趣)
4.練習(xí)鞏固(約4分鐘)
課本第30頁第3題
練習(xí)可鞏固學(xué)生對知識的理解,也可在練習(xí)中發(fā)現(xiàn)問題,使問題得到及時的解決。
5.課堂小結(jié)(約5分鐘)
條件語句的步驟、結(jié)構(gòu)及功能.
知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用
6.布置作業(yè)
課本練習(xí)第3、4題
[設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
7.板書設(shè)計
1.2.2條件語句
1、條件語句的一般格式
。1)IF-THEN-ELSE語句
格式: 框圖:
(2)IF-THEN語句
格式: 框圖:
2、小結(jié)
。1)
。2)
。3)
2、例1 引例
例2 例4
例3
高中數(shù)學(xué)說課稿12
課題《數(shù)列的概念與簡單表示方法(一)》選自普通高中課程標(biāo)準(zhǔn)試驗教科書人教版A版數(shù)學(xué)必修5第二章第一節(jié)的第一課時。我將從教材分析、學(xué)情分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過程這五個方面來匯報我對這節(jié)課的教學(xué)設(shè)想。
一、教材分析
1、教材的地位和作用
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容之一,它的地位作用可以從三個方面來看:
。1)數(shù)列有著廣泛的實際應(yīng)用。如堆放的物品的總數(shù)計算要用到數(shù)列的前n項和,又如分期儲蓄、付款公式的有關(guān)計算也要用到數(shù)列的一些知識。
。2)數(shù)列起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決數(shù)列的某些問題中得到了充分運用,數(shù)列是前面函數(shù)知識的延伸及應(yīng)用,可以使學(xué)生加深對函數(shù)概念的理解;另一方面,學(xué)習(xí)數(shù)列又為進一步學(xué)習(xí)數(shù)列的極限,等差數(shù)列、等比數(shù)列的前n項和以及通項公式打好了鋪墊。因此就有必要講好、學(xué)好數(shù)列。
。3)數(shù)列是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。是進行計算,推理等基本訓(xùn)練,綜合訓(xùn)練的重要教材。學(xué)習(xí)數(shù)列,要經(jīng)常觀察、分析、歸納、猜想,還要綜合運用前面的知識解決數(shù)列中的一些問題,這些都有助于學(xué)生數(shù)學(xué)能力的提高。
二、學(xué)情分析
從學(xué)生知識層面看:學(xué)生對數(shù)列已有初步的認識,對方程、函數(shù)、數(shù)學(xué)公式的'運用已有一定的基礎(chǔ),對方程、函數(shù)思想的體會也逐漸深刻。
從學(xué)生素質(zhì)層面看:從高一新生入學(xué)開始,我就很注意學(xué)生自主探究習(xí)慣的養(yǎng)成,F(xiàn)階段我的學(xué)生思維活躍,課堂參與意識較強,而且已經(jīng)具有一定的分析、推理能力。
三、教學(xué)目標(biāo)分析
根據(jù)上面的教材分析以及學(xué)情分析,確定了本節(jié)課的教學(xué)目標(biāo):
。1)知識目標(biāo):認識數(shù)列的特點,掌握數(shù)列的概念及表示方法,并明白數(shù)列與集合的不同點。了解數(shù)列通項公式的意義及數(shù)列分類。能由數(shù)列的通項公式求出數(shù)列的各項,反之,又能由數(shù)列的前幾項寫出數(shù)列的一個通項公式。
。2)能力目標(biāo):通過對數(shù)列概念以及通項公式的探究、推導(dǎo)、應(yīng)用等過程,鍛煉了學(xué)生的觀察、歸納、類比等分析問題的能力。同時更深層次的理解了數(shù)學(xué)知識之間的相互滲透性思想。
。3)情感目標(biāo):在教學(xué)中使學(xué)生體會教學(xué)知識與現(xiàn)實世界的聯(lián)系,并且利用各種有趣的,貼近學(xué)生生活的素材激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)熱愛生活的情感。
四、教學(xué)重點與難點
根據(jù)教學(xué)目標(biāo)以及學(xué)生的理解能力與認知水平,我確定了如下的教學(xué)重難點。
重點:理解數(shù)列的概念,能由函數(shù)的觀點去認識數(shù)列,以及對通項公式的理解。
難點:根據(jù)數(shù)列的前幾項的特點,通過多角度、多層次的觀察分析歸納出數(shù)列的一個通項公式。
五、教法分析
根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際情況,結(jié)合波利亞的先猜后證理論,本節(jié)課主要以講解法為主,引導(dǎo)發(fā)現(xiàn)為輔,由老師帶領(lǐng)同學(xué)們發(fā)現(xiàn)問題,分析問題,并解決問題.考慮到學(xué)生的認知過程,本節(jié)課會采用由易到難的教學(xué)進程以及實例給出與練習(xí)設(shè)置,讓學(xué)生們充分體會到事物的發(fā)展規(guī)律。同時為了增大課堂容量,提高教學(xué)效率,更吸引同學(xué)們的眼光,提高學(xué)習(xí)熱情,本節(jié)課還會采用常規(guī)手段與現(xiàn)代手段相結(jié)合的辦法,充分利用多媒體,將引例、例題具體呈現(xiàn).
高中數(shù)學(xué)說課稿13
一、教學(xué)背景分析
1、教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3、教學(xué)目標(biāo)
(1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;
、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;
、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實際問題。
(2) 能力目標(biāo):①進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;
、墼鰪妼W(xué)生用數(shù)學(xué)的意識。
(3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:
4、教學(xué)重點與難點
(1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。
(2)難點: ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題。
為使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。
2、學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。
下面我就對具體的教學(xué)過程和設(shè)計加以說明:
三、教學(xué)過程與設(shè)計
整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖。
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?
通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。
(二)深入探究——獲得新知
問題二 1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2、如果圓心在,半徑為時又如何呢?
這一環(huán)節(jié)我首先讓學(xué)生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對圓心不在原點的情況進行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié)。
(三)應(yīng)用舉例——鞏固提高
I、直接應(yīng)用 內(nèi)化新知
問題三 1、寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點。
2、寫出圓的圓心坐標(biāo)和半徑。
我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的'切線問題作準(zhǔn)備。
II、靈活應(yīng)用 提升能力
問題四 1、求以點為圓心,并且和直線相切的圓的方程。
2、求過點,圓心在直線上且與軸相切的圓的方程。
3、已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮。
III、實際應(yīng)用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。
(四)反饋訓(xùn)練——形成方法
問題六 1、求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程。
2、求圓過點的切線方程。
3、求圓過點的切線方程。
接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。
(五)小結(jié)反思——拓展引申
1、課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法
、賵A心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:
圓心在原點時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:。
、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。
3、激發(fā)新疑
問題七 1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。
以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學(xué)設(shè)計:
橫向闡述教學(xué)設(shè)計
(一)突出重點 抓住關(guān)鍵 突破難點
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。
第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破。
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。
高中數(shù)學(xué)說課稿14
課題:函數(shù)的單調(diào)性
教材:人教版全日制普通高級中學(xué)教科書(必修)數(shù)學(xué)第一冊(上)
授課教師:北京景山學(xué)校許云堯
【教學(xué)目標(biāo)】
1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法.
2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.
3.通過知識的探究過程培養(yǎng)學(xué)生細心觀察、認真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生感知從具體到抽象,從特殊到一般,從感性到理性的認知過程.
【教學(xué)重點】函數(shù)單調(diào)性的概念、判斷及證明.
【教學(xué)難點】根據(jù)定義證明函數(shù)的單調(diào)性.
【教學(xué)方法】教師啟發(fā)講授,學(xué)生探究學(xué)習(xí).
【教學(xué)手段】計算機、投影儀.
【教學(xué)過程】
一、創(chuàng)設(shè)情境,引入課題
為了預(yù)測北京奧運會開幕式當(dāng)天的天氣情況,數(shù)學(xué)興趣小組研究了xxxx年到xxxx年每年這一天的天氣情況,下圖是北京市今年8月8日一天24小時內(nèi)氣溫隨時間變化的曲線圖.
引導(dǎo)學(xué)生識圖,捕捉信息,啟發(fā)學(xué)生思考.
問題:觀察圖形,能得到什么信息?
預(yù)案:
(1)當(dāng)天的最高溫度、最低溫度以及達到的時刻;
(2)在某時刻的溫度;
(3)某些時段溫度升高,某些時段溫度降低.
教師指出:在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,對我們的生活是很有幫助的.
問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?
預(yù)案:水位高低、降雨量、燃油價格、股票價格等.
歸納:用函數(shù)觀點看,其實這些例子反映的就是隨著自變量的變化,函數(shù)值是變大還是變。
〖設(shè)計意圖〗由生活情境引入新課,激發(fā)興趣.
二、歸納探索,形成概念
對于自變量變化時,函數(shù)值是變大還是變小,是函數(shù)的重要性質(zhì),稱為函數(shù)的單調(diào)性,同學(xué)們在初中對函數(shù)的這種性質(zhì)就有了一定的認識,但是沒有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.
1.借助圖象,直觀感知
問題1:分別作出函數(shù)的圖象,并且觀察自變量變化時,函數(shù)值的變化規(guī)律?
預(yù)案:
(1)函數(shù),在整個定義域內(nèi)y隨x的增大而增大;函數(shù),在整個定義域內(nèi)y隨x的增大而減。
(2)函數(shù),在上y隨x的增大而增大,在上y隨x的增大而減。
(3)函數(shù),在上y隨x的增大而減小,在上y隨x的增大而減小.
引導(dǎo)學(xué)生進行分類描述(增函數(shù)、減函數(shù)),同時明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì).
問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)嗎?
預(yù)案:如果函數(shù)在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù);如果函數(shù)在某個區(qū)間上隨自變量x的增大,y越來越小,我們說函數(shù)在該區(qū)間上為減函數(shù).
教師指出:這種認識是從圖象的角度得到的,是對函數(shù)單調(diào)性的直觀、描述性的認識.
〖設(shè)計意圖〗從圖象直觀感知函數(shù)單調(diào)性,完成對函數(shù)單調(diào)性的第一次認識.
2.抽象思維,形成概念
問題1:如圖是函數(shù)的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減函數(shù)嗎?
學(xué)生的困難是難以確定分界點的確切位置.
通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進行嚴(yán)密化、精確化的`研究.
〖設(shè)計意圖〗使學(xué)生體會到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性.
問題2:如何從解析式的角度說明在上為增函數(shù)?
預(yù)案:(1)在給定區(qū)間內(nèi)取兩個數(shù),例如2和3,因為22<32,所以在上為增函數(shù).
(2)仿(1),取多組數(shù)值驗證均滿足,所以在為增函數(shù).
(3)任取,因為,即,所以在上為增函數(shù).
對于學(xué)生錯誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進行辨析,使學(xué)生認識到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個自變量.
〖設(shè)計意圖〗把對單調(diào)性的認識由感性上升到理性認識的高度,完成對概念的第二次認識.事實上也給出了證明單調(diào)性的方法,為第三階段的學(xué)習(xí)做好鋪墊.
問題3:你能用準(zhǔn)確的數(shù)學(xué)符號語言表述出增函數(shù)的定義嗎?
師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義.
(1)板書定義
(2)鞏固概念
三、掌握證法,適當(dāng)延展
例1證明函數(shù)在上是增函數(shù).
1.分析解決問題
針對學(xué)生可能出現(xiàn)的問題,組織學(xué)生討論、交流.
2.歸納解題步驟
引導(dǎo)學(xué)生歸納證明函數(shù)單調(diào)性的步驟:設(shè)元、作差、變形、斷號、定論.
練習(xí):證明函數(shù)在上是增函數(shù).
問題:除了用定義外,如果證得對任意的,且有,能斷定函數(shù)在區(qū)間上是增函數(shù)嗎?
引導(dǎo)學(xué)生分析這種敘述與定義的等價性.讓學(xué)生嘗試用這種等價形式證明函數(shù)在上是增函數(shù).
〖設(shè)計意圖〗初步掌握根據(jù)定義證明函數(shù)單調(diào)性的方法和步驟.了解等價形式進一步發(fā)展可以得到導(dǎo)數(shù)法,為今后用導(dǎo)數(shù)方法研究函數(shù)單調(diào)性埋下伏筆.
四、歸納小結(jié),提高認識
學(xué)生交流在本節(jié)課學(xué)習(xí)中的體會、收獲,交流學(xué)習(xí)過程中的體驗和感受,師生合作共同完成小結(jié).
1.小結(jié)
(1)概念探究過程:直觀到抽象、特殊到一般、感性到理性.
(2)證明方法和步驟:設(shè)元、作差、變形、斷號、定論.
(3)數(shù)學(xué)思想方法:數(shù)形結(jié)合.
2.作業(yè)
書面作業(yè):課本第60頁習(xí)題2.3第4,5,6題.
課后探究:研究函數(shù)的單調(diào)性.
高中數(shù)學(xué)說課稿15
各位老師大家好!
我說課的內(nèi)容是人教 版 A版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。
(一) 教材分析
本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學(xué)生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以解析法的方式來研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。
(二) 學(xué)情分析
本節(jié)課的 教學(xué) 對象是高二學(xué)生,這個年齡段的學(xué)生天性活潑,求知欲強,并且學(xué)習(xí)主動,在知識儲備上 知道兩點確定一條直線, 知道點與坐標(biāo)的關(guān)系,實現(xiàn)了最簡單的形與數(shù)的轉(zhuǎn)化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學(xué)生的認知規(guī)律,還沒有形成自覺地把數(shù)學(xué)問題抽象化的能力。所以在教學(xué)設(shè)計時需 從 學(xué)生的最近發(fā)展區(qū)進行探究學(xué)習(xí),盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、 鞏固 和應(yīng)用過程。
(三)教學(xué)目標(biāo)
1. 理解直線的傾斜角和斜率的概念, 理解直線的傾斜角的唯一性和斜率的存在性;
2. 掌握過兩點的直線斜率的計算公式 ;
3. 通過經(jīng) 歷從具體實例抽象出數(shù)學(xué)概念的過程,培養(yǎng)學(xué)生觀察、分析和概括能力;
4 . 通過斜率概念的建立以及斜率公式的構(gòu)建,幫助學(xué)生進一步體會數(shù)形結(jié)合的思想,培養(yǎng)學(xué)
生嚴(yán)謹(jǐn)求簡的數(shù)學(xué)精神。
重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。
難點: 直線的傾斜角與斜率的概念的形成 ,斜率公式的構(gòu)建。
(四)教法和學(xué)法
課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過程中,創(chuàng)設(shè)問題的情景,激發(fā)學(xué)生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學(xué)生學(xué)習(xí)的主動性、積極性;有效的滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性思維品質(zhì),這是本節(jié)課的教學(xué)原則。 根據(jù)這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用 設(shè)置問題串 的形式 , 啟發(fā)引導(dǎo) 學(xué)生 類比、聯(lián)想,產(chǎn)生知識遷移 ;通過 幾何畫板演示實驗、探索交流 相結(jié)合的教學(xué)方法激發(fā)學(xué)生 觀察、實驗,體驗知識的形成過程 ;由此循序漸進 , 使學(xué)生很自然達到本節(jié)課的學(xué)習(xí)目標(biāo)。
( 五) 教學(xué)過程
環(huán)節(jié) 1.指明研究方向 (3min)
平面上的點可以用坐標(biāo)表示,也就是幾何問題代數(shù)化。那么我們生活中見到的很多優(yōu)美的曲線能否用數(shù)來刻畫呢?
簡介17 世紀(jì)法國數(shù)學(xué)家笛卡爾和費馬的數(shù)學(xué)史 。
【設(shè)計意圖】 使學(xué)生對解析幾何的歷史以及它的研究方向有一個大致的了解
由此引入課題(直線的傾斜角與斜率)
環(huán)節(jié)2.活動探究(13min)
【設(shè)計意圖】 讓學(xué)生經(jīng)歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產(chǎn)生是自然的,并不是硬性規(guī)定的。
(探究活動一:傾斜角概念的得出)
問題1. 如圖,對于平面直角坐標(biāo)系內(nèi)過兩點有且只有一條直線,過一點P的位置能確定嗎?如圖,這些不同直線的區(qū)別在哪里?
【設(shè)計意圖】引導(dǎo)學(xué)生發(fā)現(xiàn)過定點的不同直線,其傾斜程度不同。從而發(fā)現(xiàn)過直線上一點和直線的傾斜程度也能確定一條直線。
問題2. 在直角坐標(biāo)系中,任何一條直線與x軸都有一個相對傾斜程度,可以用一個什么樣的幾何量來反映一條直線與x軸的相對傾斜程度呢?
【設(shè)計意圖】引導(dǎo)學(xué)生探索描述直線的傾斜程度的幾何要素, 由此引出傾斜角的概念:直線L與x軸相交,我們?nèi)軸為基準(zhǔn),x軸正向與直線L向上的方向之間所成的角α叫做直線L的傾斜角。
問題3. 依據(jù)傾斜角的定義,小組合作探究傾斜角的范圍是多少?
(探究活動二:斜率概念的得出)
問題4. 日常生活中,還有沒有表示傾斜程度的量?
問題5 . 如果使用“傾斜角”的概念,坡度實際就是 傾斜角的正切值,由此你認為還可以用怎樣的量來刻畫直線的傾斜程度?
由學(xué)生已知坡度中“前進量”不能為0 ,補充 傾斜角 是90゜的'直線 沒有斜率
【設(shè)計意圖】 遷移、類比得出 我們把 一條直線的 傾斜角 的正切值叫做 這條 直線的 斜率 , 讓學(xué)生感受數(shù)學(xué)概念來源于生活,并體驗從直觀到抽象的過程培養(yǎng)學(xué)生觀察、歸納、聯(lián)想的能力。
環(huán)節(jié) 3.過程體驗(斜率公式的發(fā)現(xiàn))(10min)
問題6. 兩點能確定一條直線,那么兩點能確定一條直線的斜率么?
先由每名學(xué)生各自舉出兩個特殊的點。例如A(1,2)、B(3,4),獨立研究如何由這兩點求斜率,再通過學(xué)生相互討論,師生共同交流提煉出解決問題的一般方法,進而把這種方法遷移到一般化的問題上來。得出斜率公式k=y2y1。
為了深化對公式的理解,完善對公式的認識,我設(shè)計了如下三個思考問題:
思考1:如果直線AB//x軸,上述結(jié)論還適用嗎?
思考2:如果直線AB//y軸,上述結(jié)論還適用嗎?
思考3:交換A、B位置,對比值有影響嗎?
在學(xué)生充分思考、討論的基礎(chǔ)上,借助信息技術(shù)工具,一方面計算 的 值,另一方面計算傾斜角的正切值。讓學(xué)生親自操作幾何畫板,改變直線的傾斜程度,動態(tài)演示可以把教科書第84頁圖3.1-4所示的各種情況都展示出來,形象直觀,可使學(xué)生更好的把握斜率公式。
環(huán)節(jié)4. 操作建構(gòu)(10min)
第一部分( 教材例一 ) : 如圖,已知A(3,2),B(-4,1),C(0,-1), 求 直線AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。
學(xué)生獨立完成后,請三位學(xué)生作答,師生共同評析,明確斜率公式的運用,強調(diào)可以從形的角度直接判斷直線的傾斜角是銳角還是鈍角,也可由直線的斜率的正負判斷。
第二部分 ( 教材例二 ) : 在平面直角坐標(biāo)系中,畫出經(jīng)過原 點且斜率分別為1,-1,2及-3的直線
本題要求學(xué)生畫圖,目的是加強數(shù)形結(jié)合,我將請兩位同學(xué)上臺板演,其余同學(xué)在練習(xí)本上完成,因為直線經(jīng)過原點,所以只要在找出另外一點就可確定,再推導(dǎo)斜率公式時,學(xué)生已經(jīng)知道,斜率k的值與直線上P1,P2的位置無關(guān),因此,由已知直線的斜率畫直線時,可以再找出一個特殊點即可。
環(huán)節(jié) 5.小結(jié)作業(yè)(4min)
1、本節(jié)課你學(xué)到了哪些新的概念?他們之間有什么樣 的關(guān)系?
2、怎樣求出已知兩點的直線的斜率?
3 、本節(jié)課你還有哪些問題?
兩點 直線 傾斜角 斜率
一點一方向
作業(yè): 必做題: P.86 第1,2,題
選做題: P.90 探究與發(fā)現(xiàn):魔法師的地毯
以上五個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,以明線和暗線雙線滲透。并注意調(diào)動學(xué)生自主探究與合作交流。注意教師適時的點撥引導(dǎo),學(xué)生主體地位和教師的主導(dǎo)作用 得以 體現(xiàn)。能夠較好的實現(xiàn)教學(xué)目標(biāo),也使課標(biāo)理念能夠很好的得到落實。
(六) 板書設(shè)計
3.1.1 直線的傾斜角與斜率
1定義: 傾斜角 學(xué)生板演
斜率
2.斜率k與傾斜角之間的關(guān)系
3.斜率公式
【高中數(shù)學(xué)說課稿】相關(guān)文章:
高中數(shù)學(xué)說課稿01-10
高中數(shù)學(xué)說課稿05-20
(薦)高中數(shù)學(xué)說課稿06-07
高中數(shù)學(xué)說課稿4篇01-12
高中數(shù)學(xué)說課稿15篇01-11